Organic Letters
Letter
and Induction of Apoptosis by Preussin in Human Tumor Cells.
Antimicrob. Agents Chemother. 2000, 44, 2794−2801. (d) Stadheim, T.
A.; Kucera, G. L. c-Jun N-Terminal Kinase/Stress-Activated Protein
Kinase (JNK/SAPK) Is Required for Mitoxantrone- and Anisomycin-
Induced Apoptosis in HL-60 Cells. Leuk. Res. 2002, 26, 55−65.
(8) Khanov, M. T.; Sultanov, M. B.; Egorova, M. R. Pharmacological
Study of the Alkaloid Codonopsine Extracted from Codonopsis
Clematidea. Farmakol. Alkaloidov Serdech. Glikoyidov 1971, 210−
212; Chem. Abstr. 1972, 77, 135091r.
collection, analysis, and interpretation of data and in the
writing, reviewing, and approval of the final publication.
REFERENCES
■
(1) For selected reviews on the Nef reaction, see: (a) Pinnick, H. W.
The Nef Reaction. In Organic Reactions; Paquette, L. A., Ed.; John
Wiley & Sons: New York, 1990; Vol. 38, pp 655−792. (b) Bur, S. K.
Polonovski- and Pummerer-Type Reactions and the Nef Reaction. In
Comprehensive Organic Synthesis II, 2nd ed.; Knochel, P., Ed.;
Elesevier: New York, 2014; Vol. 6, pp 786−801. (c) Ballini, R.;
Petrini, M. The Nitro to Carbonyl Conversion (Nef Reaction): New
Perspectives for a Classical Transformation. Adv. Synth. Catal. 2015,
357, 2371−2402.
(9) El Ashry, E. S. H.; Rashed, N.; Shobier, A. H. S. Glycosidase
Inhibitors and Their Chemotherapeutic Value, Part 2. Pharmazie
2000, 55, 331−348.
(10) (a) Altenbach, R. J.; Bogdan, A.; Desroy, N.; Gfesser, G. A.;
Greszler, S. N.; Koenig, J. R.; Kym, P. R.; Liu, B.; Scanio, M. J.; Searle,
X.; Wang, X.; Yeung, M. C.; Zhao, G. Substituted Pyrrolidines and
Methods of Use. U.S. Patent 20180099932 A1, April 12, 2018.
(b) Hartung, J.; Greszler, S. N.; Klix, R. C.; Kallemeyn, J. M.
Development of an Enantioselective [3 + 2] Cycloaddition To
Synthesize the Pyrrolidine Core of ABBV-3221 on Multikilogram
(2) Nef, J. U. Ueber die Constitution der Salze der Nitroparaffine.
Justus Liebigs Annalen der Chemie 1894, 280, 263−291.
(3) For selected references on the oxidative Nef methods, see:
(a) Shechter, H.; Williams, F. T. An Effective General Method for
Oxidizing Salts of Mononitro Compounds with Neutral Permanga-
nate to Aldehydes and Ketones. J. Org. Chem. 1962, 27, 3699−3701.
(b) Saville-Stones, E. A.; Lindell, S. D. Direct Transformation of
Nitroalkanes to Alkanoic Acids Under Mild Conditions. Synlett 1991,
1991, 591−592. (c) Olah, G. A.; Arvanaghi, M.; Vankar, Y. D.; Surya
Prakash, G. K. Synthetic Methods and Reactions; 89. Improved
Transformation of Nitro Compounds into Carbonyl Compounds by
Hydrogen Peroxide/Potassium Carbonate. Synthesis 1980, 1980,
662−663. (d) Bortolini, O.; De Nino, A.; Garofalo, A.; Maiuolo, L.;
Russo, B. Mild Oxidative Conversion of Nitroalkanes into Carbonyl
Compounds in Ionic Liquids. Synth. Commun. 2010, 40, 2483−2487.
(e) McMurry, J. E.; Melton, J.; Padgett, H. New Method for
Converting Nitro Compounds into Carbonyls. Ozonolysis of
Nitronates. J. Org. Chem. 1974, 39, 259−260. (f) Umemiya, S.;
Nishino, K.; Sato, I.; Hayashi, Y. Nef Reaction with Molecular Oxygen
in the Absence of Metal Additives, and Mechanistic Insights. Chem. -
Eur. J. 2014, 20, 15753−15759.
̋
́
(11) Fejes, I.; Toke, L.; Blasko, G.; Nyerges, M.; Siek Pak, C. A New
Synthesis of 3,5-Diaryl-pyrrole-2-carboxylic Acids and Esters.
Tetrahedron 2000, 56, 8545−8553.
(12) Yoshimura, T.; Asada, K.; Oae, S. Deoxygenation of Tertiary
Amine Oxides with Carbon Bisulfide. Bull. Chem. Soc. Jpn. 1982, 55,
3000−3003.
(13) Barton, D. H. R.; Fernandez, I.; Richard, C. S.; Zard, S. Z. A
Mild Procedure for the Reduction of Aliphatic Nitro Compounds to
Oximes. Tetrahedron 1987, 43, 551−558.
(14) Blatt, A. H. The Beckmann Rearrangement. Chem. Rev. 1933,
12, 215−260 and references cited therein. .
(15) Bolotin, D. S.; Bokach, N. A.; Demakova, M. Y.; Kukushkin, V.
Y. Metal-Involving Synthesis and Reactions of Oximes. Chem. Rev.
2017, 117, 13039−13122 and references cited therein. .
(16) (a) Bartra, M.; Romea, P.; Urpí, F.; Vilarrasa, J. A Fast
Procedure for the Reduction of Azides and Nitro Compounds Based
on the Reducing Ability of Sn(SR)3-Species. Tetrahedron 1990, 46,
587−594. (b) Wang, K.; Qian, X.; Cui, J. One Step from Nitro to
Oxime: A Convenient Preparation of Unsaturated Oximes by the
Reduction of the Corresponding Vinylnitro Compounds. Tetrahedron
2009, 65, 10377−10382. (c) Jakubec, P.; Hawkins, A.; Felzmann, W.;
Dixon, D. J. Total Synthesis of Manzamine A and Related Alkaloids. J.
Am. Chem. Soc. 2012, 134, 17482−17485.
(17) (a) Robertson, J. A. Preparation of Oximes and N-
Alkylhydroxylamines by Hydrogenation of α-Chloro Nitro Com-
pounds. J. Org. Chem. 1948, 13, 395−398. (b) Liao, H.-G.; Xiao, Y.-J.;
Zhang, H.-K.; Liu, P.-L.; You, K.-Y.; Wei, C.; Luo, H. Hydrogenation
of Nitrocyclohexane to Cyclohexanone Oxime over Pd/CNT Catalyst
under Mild Conditions. Catal. Commun. 2012, 19, 80−84.
(18) Ciaccia, M.; Di Stefano, S. Mechanisms of Imine Exchange
Reactions in Organic Solvents. Org. Biomol. Chem. 2015, 13, 646−
654.
(19) Critchfield, F. E.; Johonson, J. B. Reaction of Carbon Disulfide
with Primary and Secondary Aliphatic Amines as an Analytical Tool.
Anal. Chem. 1956, 28, 430−436.
(20) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.;
Downey, C. W. A New Copper Acetate-Bis(oxazoline)-Catalyzed,
Enantioselective Henry Reaction. J. Am. Chem. Soc. 2003, 125,
12692−12693.
(21) Ballini, R.; Bosica, G.; Fiorini, D.; Petrini, M. Unprecedented,
Selective Nef Reaction of Secondary Nitroalkanes Promoted by DBU
under Basic Homogeneous Conditions. Tetrahedron Lett. 2002, 43,
5233−5235.
(4) For selected references on the reductive Nef methods, see:
(a) Melton, J.; McMurry, J. E. Mild Procedure for Transforming Nitro
Groups into Carbonyls. Application to the Synthesis of cis-Jasmone. J.
Am. Chem. Soc. 1971, 93, 5309−5311. (b) McMurry, J. E.; Melton, J.
A New Method for the Conversion of Nitro Groups into Carbonyls. J.
Org. Chem. 1973, 38, 4367−4373. (c) Pak, C. S.; Nyerges, M. Nef
Reaction of Nitropyrrolidines: Novel Synthesis of Hydroxypyrrolidine
́
Derivatives. Synlett 2007, 2007, 2355−2358. (d) Bures, J.; Vilarrasa, J.
Catalytic, PMe3-Mediated Conversion of Secondary Nitroalkanes to
Ketones: A Very Mild Nef-Type Process. Tetrahedron Lett. 2008, 49,
́
441−444. (e) Bures, J.; Isart, C.; Vilarrasa, J. AuBr3-Catalyzed
Thiooxime-to-Carbonyl Conversion: From Chiral Aliphatic Nitro
Compounds to Ketones without Racemization. Org. Lett. 2009, 11,
4414−4417. (f) Pradhan, P. K.; Dey, S.; Jaisankar, P.; Giri, V. S. Fe-
HCl: An Efficient Reagent for Deprotection of Oximes as well as
Selective Oxidative Hydrolysis of Nitroalkenes and Nitroalkanes to
Ketones. Synth. Commun. 2005, 35, 913−922.
(5) Toullec, J. Keto-Enol Equilibrium Constants. In The Chemistry of
Enols; Rappoport, Z., Ed.; John Wiley & Sons: New York, 1990; pp
323−398.
̀
́
(6) (a) Jimenez, A.; Vazquez, D. In Antibiotics, Anisomycin and
Related Antibiotics, Part 2; Hahn, F. E., Ed.; Springer-Verlag: New
York, 1979; Vol. 5, pp 1−19. (b) Johnson, J. H.; Phillipson, D. W.;
Kahle, A. D. J. Antibiot. 1989, 42, 1184−1185. (c) Hosoya, Y.;
Kameyama, T.; Naganawa, H.; Okami, Y.; Takeuchi, T. J. J. Antibiot.
1993, 46, 1300−1302. (d) Kasahara, K.; Yoshida, M.; Eishima, J.;
Takesako, K.; Beppu, T.; Horinouchi, S. J. Antibiot. 1997, 50, 267−
269.
(7) (a) Lee, Y. S.; Wurster, R. D. Effects of Antioxidants on the Anti-
Proliferation Induced by Protein Synthesis Inhibitors in Human Brain
(22) Hwu, J. R.; Josephrajan, T.; Tsay, S.-C. Silicon-Catalyzed
Conversion of Nitro Compounds into Ketones and Poly(1,3-
diketones). Synthesis 2006, 2006, 3305−3308.
(23) Ogibin, Y. N.; Ilovaiskii, A. I.; Merkulova, V. M.; Terent’’ev, A.
O.; Nikishin, G. I. Electrooxidative Transformation of Unsubstituted
̋
̋
Tumor Cells. Cancer Lett. 1995, 93, 157−163. (b) Torocsik, B.;
́
Szeberenyi, J. Anisomycin Affects Both Pro- and Antiapoptotic
Mechanisms in PC12 Cells. Biochem. Biophys. Res. Commun. 2000,
278, 550−556. (c) Achenbach, T. V.; Slater, P. E.; Brummerhop, H.;
̈
Bach, T.; Muller, R. Inhibition of Cyclin-Dependent Kinase Activity
E
Org. Lett. XXXX, XXX, XXX−XXX