at the high oxidation potentials of lithium ion batteries, it
corrodes the aluminum electrode collector connected to the
positive electrode.1 So, a growing interest is being paid to new
and efficient sulfonimide salts. It can be noticed that sulfon-
imides have also received attention in recent years as ionic
liquids,2 electrolytes for fuel cells,3 or acid catalysts.4 For all
these applications, it must be emphasized that fluorinated anions
are inescapable because of their very low basicity, nucleophi-
licity, and oxidability.
Efficient Preparation of New Fluorinated Lithium
and Ammonium Sulfonimides
Fabien Toulgoat,* Bernard. R. Langlois,*
Maurice Me´debielle, and Jean-Yves Sanchez†
ICBMS, Institut de Chimie et Biochimie Mole´culaires et
Supramole´culaires, Equipe SERCOF, 43 bouleVard du 11
noVembre 1918, Villeurbanne, F-69622, France, CNRS,
UMR5246, Villeurbanne, F-69622, France, UniVersite´ de
Lyon, Lyon, F-69622, France, UniVersite´ Lyon 1,
Lyon, F-69622, France, INSA-Lyon,
Villeurbanne, F-69622, France, and CPE Lyon,
Villeurbanne, F-69616, France
FIGURE 1. Structure of the desired sulfonimide salts.
ftoulgoat@yahoo.fr; langlois@uniV-lyon1.fr
ReceiVed February 03, 2008
As we recently developed new sulfonyl fluorides,5 we used
them to prepare a new class of sulfonimides (Figure 1) which
could provide electrolytes with better properties than LiTFSI.
Since the discovery of LiTFSI,6a a large number of perfluo-
roalkanesulfonimide salts7 have been prepared, but only few
of them contain an aromatic ring.8,9 The sulfonimide salts we
plan to describe here are complementary to them, as they are
constituted by an aromatic part separated by a linker from a
fluorinated moiety. This linker can be a sulfide function, that
brings some flexibility to the molecules, or a sulfone, which
enhances the electron withdrawing properties and the polarity
of the anion. The aromatic group could also allow the introduc-
tion of various substituents or functions enabling the preparation
of ionomers.
An efficient preparation of new fluorinated lithium and
ammonium sulfonimides, from the corresponding sulfonyl
fluorides, is reported. These sulfonyl fluorides are reacted
with benzylamine, then triflated. Due to the high leaving
ability of fluorinated sulfonimides, the formed N-benzylsul-
fonimides are simply debenzylated with an alcohol. Finally,
the intermediate oxonium sulfonimides are neutralized, in
situ, by various bases. The obtained sulfonimides are
potential electrolytes for lithium batteries or fuel cells.
Two main methods have been described to prepare fluoro-
alkanesulfonimides: the reaction of sulfonyl fluorides with
trifluoromethanesulfonamide in the presence of a base9,10 or with
the sodium salt of N-(trimethylsilyl)trifluoromethylsulfonamide.6,11
(2) Ionic Liquids in Synthesis; Wasserscheid, P., Welton, T., Eds.; Wiley-
VCH: Weinheim, 2003.
(3) (a) Souzy, R.; Ameduri, B.; Boutevin, B.; Gebel, G.; Capron, P. Solid
State Ionics 2005, 176, 2839–2848. (b) Souzy, R.; Ameduri, B. Prog. Polym.
Sci. 2005, 30, 644–687. (c) Belieres, J. P.; Gervasio, D.; Angell, C. A. Chem.
Commun. 2006, 4799, 4801.
(4) Olah, G. A., Prakash, G. K. S., Sommer J., Eds. Superacids; Wiley-
Interscience: New York, 1984.
(5) (a) Toulgoat, F.; Langlois, B. R.; Me´debielle, M.; Sanchez, J.-Y. J. Org.
Chem. 2007, 72, 9046–9052. (b) Sanchez, J.-Y.; Langlois, B.; Me´debielle, M.;
Toulgoat, F. FR20060006466, 2006.
Introduction
Nowadays, electricity production and storage is a major
challenge for reducing global warming. Lithium batteries are
already popular for small electronic devices but are not yet
adapted for future applications. To circumvent the current
drawbacks, new electrodes and new electrolytes have to be
designed.1 Considering electrolytes, LiPF6 is currently used, but
its development in batteries operating at 80-90 °C is hindered
by a moderate thermal and hydrolytic stability and by the
toxicity of its decomposition products. As for (CF3SO2)2NLi
(LiTFSI), its high conductivity and its high thermal and
electrochemical stabilities make it a promising salt. However,
(6) (a) Foropoulos, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720–
3723. (b) DesMarteau, D. D.; Witz, M. J. Fluorine Chem. 1991, 52, 7–12.
(7) For example: (a) Waddell, J.; Howells, R. D.; Lamana, W. M.; Fanta,
A. D. US 5,874,616 (3M), 1999; Chem. Abstr. 1999, 130, 184069. (b) Armand,
M.; Choquette, Y.; Gauthier, M.; Michot, C. EP 850,920 (CNRS - Hydro
Quebec), 1998; Chem. Abstr. 1998, 129, 122975. (c) Nakano, T. JP 2000 082,494
(Sanyo Chemical Ind. Ltd.), 2000; Chem. Abstr. 2000, 132, 239412. (d)
DesMarteau, D. D. J. Fluorine Chem. 1995, 72, 203–208. (e) Feiring, A. E.;
Doyle, M. C.; Roelfos, M. G.; Farnahm, W. B.; Bekiarian, P. G.; Blau, H. A. K.
WO 99 45,048 (DuPont), 1999; Chem. Abstr. 1999, 131, 200299. (f) Michot,
A.; Armand, M. WO 99 38,842 (Hydro Quebec), 1999; Chem. Abstr. 1999, 131,
145247.
(8) Lu, K. US 2003 013,817, 2003; Chem. Abstr. 2003, 138, 107174.
(9) (a) Doyle, M. C.; Feiring, A. E.; Choi, S. K. WO 99 67,304 (DuPont),
1999; Chem. Abstr. 1999, 132, 50411. (b) Feiring, A. E.; Wonchoba, W. R. J.
Fluorine Chem. 2000, 105, 129–135. (c) Feiring, A. E.; Choi, S. K.; Doyle, M.;
Wonchoba, W. R. Macromolecules 2000, 33, 9262–9271.
† Laboratoire d’Electrochimie et de Physico-chimie des Mate´riaux et des
Interfaces - LEPMI, UMR 5631 CNRS-INPG-UJF, BP.75, 38402 Saint-Martin-
d’He`res, France.
(1) (a) Xu, K. Chem. ReV. 2004, 104, 4303–4417. (b) Alloin, F.; Benrabah,
D.; Sanchez, J-Y. J. Power Sources 1997, 68, 372–376.
(10) (a) Howells,R. D. ; Lamanna,W. M. ;Fanta,A. D. ; Waddell,J. E. WO
97 23,448 (3M), 1997; Chem. Abstr. 1997, 127, 136181. (b) Sakai, S.; Takase,
H.; Sakauchi, H. EP 1,029,850 (Central Glass Co. Ltd.) 2000; Chem. Abstr.
2000, 133, 192769.
10.1021/jo800272q CCC: $40.75
Published on Web 06/13/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 5613–5616 5613