2364 J. Am. Chem. Soc., Vol. 119, No. 10, 1997
Zhang and Tam
Nearly all are based on linear protected peptide precursors either
in solution or anchored on a resin support.15-17 Recently, we
and others have developed methods for macrocyclization of
unprotected peptide precursors.18 One particularly useful form
of macrocyclization method is to link unprotected peptides in
an end-to-end fashion, forming a peptide bond as frequently
occurs naturally.19
There are two major considerations in the macrocyclization
of unprotected peptide segments to form end-to-end cyclic
peptides. First and foremost is regioselectivity. The achieve-
ment of regioselectivity of amide bond formation without
protecting groups has been demonstrated in the intermolecular
coupling of linear peptides.20-22 A common principle in
obtaining regioselectivity of amide bond formation is entropic
activation achieved by placing the NR- and CR-termini in close
proximity to allow an intramolecular acyl shift, thus forming a
peptide bond. Brenner et al.23 advocated the template-driven
amino acyl insertion approach while Kemp et al.24 have
developed a proximity-driven acyl transfer approach that results
in highly effective molarity in amide bond formation. We have
investigated other variations and refer to these amide bond
approaches as orthogonal coupling methods.25
Orthogonal coupling is similar in concept to chemoselective
ligation based on thiol or aldehyde chemistries,26-29 but the
resulting product contains an amide bond similar to that obtained
in an amino acid coupling reaction. In end-to-end macrocy-
Figure 1. Cyclization of N-terminal cysteinyl peptides through
transthioesterification under the control of ring-chain tautomeric
equilibrium.
(15) (a) Manesis, N. J.; Goodman, M. J. Org. Chem. 1987, 52, 5331-
5341. (b) Gilon, C.; Halle, D.; Chorev, M.; Selinger, Z.; Byk, G.
Biopolymers 1991, 31, 745-750.
(16) (a) McMurray, J. S., Tetrahedron Lett. 1992, 33, 4557-4560. (b)
Kates, S. A., Sole´, N. A.; Johnson, C. R.; Hudson, D.; Barany, G.; Albericio,
F. Tetrahedron Lett. 1993, 34, 1549-1552. (c) Richter, L. S.; Tom, J. Y.
K.; Burnier, J. P. Tetrahedron Lett. 1994, 35, 5547-5550
(17) (a) Schiller, P. W.; Nguyen, T. M.-D.; Miller, J. Int. J. Peptide
Protein Res. 1985, 25, 171-177. (b) Felix, A. M.; Wang, C. T.; Heimer,
E. P.; Fournier, A. J. Int. J. Peptide Protein Res. 1988, 31, 231-238.
(18) (a) Botti, P.; Pallin, D. P.; Tam, J. P. J. Am. Chem. Soc. 1996, 118,
10018-10024. (b) Jackson, D. Y.; Burnier, J. P.; Wells, J. A. J. Am. Chem.
Soc. 1995, 117, 819-820. (c) Wood, S. J.; Wetzel, R. Int. J. Peptide Protein
Res. 1992, 39, 533-539.
(19) (a) Hotchkiss, R. D.; Dubos, R. J. J. Biol. Chem. 1940, 136, 803-
804. (b) Wieland, T. Naturwissenschaften 1987, 74, 367-373. (c) Wieland,
T.; Lu¨ben, G.; Ottenheym, H. C. J.; Faesel, J.; de Vires, J. X.; Konz, W.;
Prox, A.; Schmid, J. Angew. Chem., Int. Ed. Engl. 1968, 7, 204-208.
(20) (a) Liu, C. F.; Tam, J. P. J. Am. Chem. Soc.1994, 116, 4149-4153.
(b) Liu, C. F.; Tam, J. P. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6584-
6588.
clization, the coupling reaction must be specific between an NR-
amine and a weakly activated CR-acyl moiety and proceeds
independently of the Nꢀ-amine of the side-chain amines and
other side-chain functional groups. For our purpose of obtaining
a cyclic peptide containing a thiol moiety which can then be
used for attachment to a functionalized scaffolding, this could
be achieved by orthogonal coupling via intramolecular tran-
sthioesterification of a linear peptide precursor containing an
N-terminal cysteine and a C-terminal thioester. The thioester
intermediate would subsequently undergo a proximity-driven
S- to N-acyl transfer to give an end-to-end cyclic peptide with
a peptide backbone and would introduce a thiol moiety that is
necessary for the further assembly of peptide dendrimers. The
feasibility of intermolecular coupling of two unprotected peptide
segments was proposed 40 years ago by Wieland et al.30 and
was recently demonstrated in larger peptide segments by
Dawson et al.21 and our laboratory.22 However, the feasibility
and regioselectivity of intramolecular transthioesterification for
preparing cyclic peptides have not been determined.
The second consideration in the macrocyclization of unpro-
tected peptide segments is the avoidance of oligomerization.31
Since both ends of a cysteinyl linear thioester peptide precursor
are reactive moieties, oligomerization would result in low yields
and would require that the macrocyclization be performed in
high dilution. Recently, we have found that we could overcome
this limitation by exploiting the equilibrium of ring-chain
tautomerization deriving from the weakly activated nature of
the CR-acyl moiety used for orthogonal coupling. In ring-chain
tautomerization (Figure 1), an open-chain system (1) containing
(21) Dawson, P. E., Muir, T. W., Clark-Lewis, I.; Kent, S. B. H. Science
1994, 266, 776-779.
(22) (a) Tam, J. P., Lu, Y.-A.; Liu, C. F.; Shao, J. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 12485-12489. (b) Liu, C. F.; Rao, C.; Tam, J. P.
Tetrahedron Lett. 1996, 37, 933-936.
(23) (a) Brenner, M.; Zimmerman, J. P.; Wehrmu¨ller, J.; Quitt, P.;
Photaki, I. Experientia 1955, 11, 397-399. (b) Brenner, M.; Zimmerman,
J. P.; Wehrmu¨ller, J.; Quitt, P.; Schneider, W.; Hartmann, A. HelV. Chim.
Acta 1957, 40, 604-610. (c) Brenner, M.; Zimmermann, J. P.; Wehrmu¨ller,
J.; Quitt, P.; Hartmann, A.; Schneider, W.; Beglinger, U. Ibid. 1957, 40,
1497-1517. (d) Brenner, M.; Zimmermann, J. P. Ibid. 1957, 40, 1933-
1939. (e) Dahn, H.; Menasse, R.; Rosenthaler, J.; Brenner, M. Ibid. 1959,
42, 2249-2251.
(24) (a) Kemp, D. S. Biopolymers 1981, 20, 1793-1804. (b) Fotouhi,
N.; Galakatos, N.; Kemp, D. S. J. Org. Chem. 1989, 54, 2803-2817. (c)
Kemp, D. S.; Carey, R. I. Tetrahedron Lett. 1991, 32, 2845-2848. (d)
Kemp, D. S.; Carey, R. I. J. Org. Chem. 1993, 58, 2216-2222.
(25) Tam, J. P.; Liu, C. F.; Lu, Y.-A.; Shao, J.; Zhang, L.; Rao, C.;
Shin, Y. S. In Peptides Chemistry, Structure and Biology; Proceedings of
the 14nd American Peptide Symposium; Kaumaya, P. T. P., Hodges, R. S.,
Eds.; Mayflower Scientific Lit., 1996; pp 15-17.
(26) (a) Rose, K. J. Am. Chem. Soc. 1994, 116, 30-33. (b) Dawson, P.
E.; Kent, S. B. H. J. Am. Chem. Soc. 1993, 115, 7263-7266.
(27) Wallace, C. J. A.; Clark-Lewis, I. J. Biol. Chem. 1992, 267, 3852-
3861.
(28) (a) King, T. P.; Zhao, S. W.; Lam, T. Biochemistry 1986, 25, 5774-
79. (b) Geoghegan, K. F.; Stroh, H. G. Bioconjugate Chem. 1992, 3, 138-
146. (c) Gaertner, H. F.; Rose, K.; Cotton, R.; Timms, D.; Camble, R.
Offord. R. E. Bioconjugate Chem. 1992, 3, 262-268.
(29) (a) Rose, K.; Vilaseca, L. A.; Werlen, R.; Meunier, A.; Fisch, I.;
Jones, R. M. L.; Offord, R. Bioconjugate Chem. 1991, 2, 154-159. (b)
Fisch, I.; Ku¨nzi, G; Rose, K.; Offord, R. Bioconjugate Chem. 1992, 3, 147-
153.
(30) Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H. Liebigs
Ann. Chem. 1953, 583, 129-149.
(31) (a) McMurray, J. S.; Lewis, C. A.; Obeyesekere, N. U. Peptide Res.
1994, 7, 195-206. (b) Kopple, K. D. J. Pharm. Sci. 1972, 61, 1345-1356.