6
P. RUNGTA ET AL.
31
[a]D ¼ ꢂ24.19 (c 0.1, MeOH); IR (KBr) ꢀmax cmꢂ1: 763,
2.8.1. 50-O,40-C-Methylene-b-D-xylofuranosyl thymine
(4a)
968, 1086, 1123, 1270, 1482, 1663, 1690, 2953, 3190,
3411; H NMR (CDCl3, 400 MHz): d 1.66 (3H, s, C-5CH3),
1
It was obtained as white solid (0.10 g) in 90% yield.
4.31 (1H, s, C-30H), 4.50 (1H, s, C-20H), 4.53 (2H, s,
–OCH2Ph), 4.77 (2H, dd, J ¼ 7.2 and 13.2 Hz, C-100H2),
4.94 (1H, d, J ¼ 8.0 Hz, C-50Ha), 5.02 (1H, d, J ¼ 7.6 Hz,
C-50Hb), 5.67 (1H, brs, C-20-OH), 5.87 (1H, s, C-10H),
7.11–7.30 (6H, m, ArH & C-6H), 10.71 (1H, brs, NH); 13C
NMR (CDCl3, 100.6 MHz): d 12.32 (C-5CH3), 72.22
(–OCH2Ph), 76.66 (C-50), 77.32 (C-20), 82.29 (C-100), 83.89
(C-30), 88.64 (C-40), 93.35 (C-10), 109.59 (C-5), 127.80,
128.32 and 128.62 (ArC), 136.53 (C-6), 136.61 (ArC),
150.68 (C-2), 164.72 (C-4); HR-ESI-TOF-MS: m/z
361.1403 ([M þ H]þ), calcd. for [C18H20N2O6þH]þ
361.1394.
Rf ¼ 0.2 (10% MeOH in CHCl3); M. Pt.: 253–255 ꢀC;
31
[a]D ¼ ꢂ39.93 (c 0.1, MeOH); IR (KBr) ꢀmax cmꢂ1: 754,
960, 1065, 1261, 1481, 1689, 2928, 3039, 3408, 3444;
1H NMR (DMSO-d6, 400 MHz): d 1.74 (3H, s, C-5CH3),
4.05 (1H, s, C-30H), 4.14 (1H, s, C-20H), 4.52 (2H, dd,
J ¼ 7.2 and 10.8 Hz, C-100H2), 4.64 (1H, d, J ¼ 7.6 Hz, C-
50Ha), 4.85 (1H, d, J ¼ 7.6 Hz, C-50Hb), 5.68 (1H, d,
J ¼ 2.4 Hz, C-10H), 5.80 (1H, brs, OH), 5.93 (1H, brs, OH),
7.42 (1H, s, C-6H), 11.33 (1H, s, NH); 13C NMR (DMSO-
d6, 100.6 MHz): d 12.29 (C-5CH3), 76.43 (C-50), 76.72 (C-
20), 78.68 (C-30), 80.73 (C-100), 86.25 (C-40), 90.26 (C-10),
108.58 (C-5), 136.98 (C-6), 150.48 (C-2), 163.80 (C-4);
HR-ESI-TOF-MS: m/z 271.0928 ([M þ H]þ), calcd. for
[C11H14N2O6þH]þ 271.0925.
2.7.2. 30-O-Benzyl-50-O,40-C-methylene-b-D-xylofura-
nosyl uracil (14b)
2.8.2. 50-O,40-C-Methylene-b-D-xylofuranosyl uracil (4b)
It was obtained as white solid (0.24 g) in 70% yield.
It was obtained as white solid (0.09 g) in 88% yield.
Rf ¼ 0.5 (10% MeOH in CHCl3); M. Pt.: 71–73 ꢀC;
Rf ¼ 0.2 (10% MeOH in CHCl3); M. Pt.: 203–205 ꢀC;
[a]D ¼ þ3.21 (c 0.1, MeOH); IR (KBr) ꢀmax cmꢂ1: 706,
30
[a]D ¼ ꢂ44.12 (c 0.1, MeOH); IR (KBr) ꢀmax cmꢂ1
:
31
1
762, 969, 1082, 1269, 1458, 1678, 2928, 3207, 3396; H
962, 1075, 1128, 1273, 1470, 1682, 1705, 3018,
3299; 1H NMR (DMSO-d6, 400 MHz): d 4.04-4.05 (1H,
m, C-30H), 4.15 ꢂ 4.17 (1H, m, C-20H), 4.53 (2H, dd,
J ¼ 7.2 and 9.6 Hz, C-100H2), 4.66 (1H, d, J ¼ 8.0 Hz, C-
50Ha), 4.84 (1H, d, J ¼ 7.2 Hz, C-50Hb), 5.57 (1H, dd,
J ¼ 2.0 and 7.6 Hz, C-5H), 5.67 (1H, d, J ¼ 1.6 Hz, C-
10H), 5.83 (1H, d, J ¼ 3.6 Hz, C-20-OH), 5.90 (1H, d,
J ¼ 4.0 Hz, C-30-OH), 7.51 (1H, d, J ¼ 7.6 Hz, C-6H),
11.35 (1H, s, NH); 13C NMR (DMSO-d6, 100.6 MHz): d
76.23 (C-50), 76.67 (C-20), 78.97 (C-30), 80.82 (C-100),
87.03 (C-40), 90.99 (C-10), 100.76 (C-5), 141.26 (C-6),
150.40 (C-2), 163.24 (C-4); HR-ESI-TOF-MS: m/z
257.0768 ([M þ H]þ), calcd. for [C10H12N2O6þH]þ
257.0768.
NMR (CDCl3, 400 MHz): d 4.29 (1H, s, C-30H), 4.48 (1H, s,
C-20H), 4.53 (2H, s, –OCH2Ph), 4.75 (2H, dd, J ¼ 7.6 and
20.4 Hz, C-100H2), 4.94 (2H, dd, J ¼ 7.2 and 24.2 Hz, C-
50H2), 5.43 (1H, brs, OH), 5.56 (1H, dd, J ¼ 1.6 and
8.0 Hz, C-5H), 5.84 (1H, s, C-10H), 7.15–7.17 (2H, m,
ArH), 7.30–7.32 (3H, m, ArH), 7.36 (1H, d, J ¼ 8.4 Hz, C-
6H), 10.64 (1H, brs, NH); 13C NMR (CDCl3, 100.6 MHz): d
72.32 (–OCH2Ph), 76.57 (C-50), 77.25 (C-20), 82.13 (C-100),
83.67 (C-30), 88.81 (C-40), 93.50 (C-10), 101.11 (C-5),
127.98, 128.43, 128.65 and 136.44 (ArC), 140.62 (C-6),
150.71 (C-2), 164.20 (C-4); HR-ESI-TOF-MS: m/z
347.1241 ([M þ H]þ), calcd. for [C17H18N2O6þH]þ
347.1238.
2.9. X-ray diffraction studies on 50-O,40-C-
Methylene-b-D-xylofuranosyl thymine (4a)
2.8. General procedure for the synthesis of C-40-
spiro-oxetano-xylofuranosyl nucleosides 4a-b
Single crystals suitable for X-ray diffraction studies
were grown by dissolving 50-O,40-C-methylene-b-D-xylo-
furanosyl thymine (4a) in 5% methanol in chloroform
and allowing slow evaporation of the solution at room
temperature. The X-ray diffraction data was collected
on X’calibur CCD diffractometer with graphite mono-
chromatized Cu/Ka radiation (k ¼ 0.71073 Å) at tem-
perature 298 K. The structure was solved by direct
methods using SHELXS-97, and refined by the full-
matrix least-squares method on F2 (SHELXL-97)
(Sheldrick 2008). All calculations were carried out using
the WinGX package of the crystallographic programs
To a solution of nucleoside 14a-b (0.4 mmol) in anhyd-
rous THF:MeOH (4 mL, 9:1, v/v) was added Pd(OH)2-C
(20 wt%, 0.03 g) and 88% formic acid (0.12 mL,
3.18 mmol). The reaction mixture was refluxed for 1 h
whereupon it was cooled to 25 ꢀC. The catalyst was
carefully filtered off, washed with excess MeOH and
the combined filtrate was concentrated. The crude
product thus obtained was purified by silica gel col-
umn chromatography using methanol in chloroform
as gradient solvent system to afford spiro-nucleosides
4a-b in 90 and 88% yields, respectively.