Notes and references
z For DAPPN: mp: 84–86 1C. IR (KBr pellet, cmꢂ1): 3424 (NH str),
1676 (CQO str). MS (EI): calc for C23H31N4O3 m/z = 411.5, found
m/z = 412. Analysis: calc for C23H31N4O3: C, 67.13; H, 7.59; N, 13.61.
Found: C 67.93, H 7.86, N 12.07. EPR (toluene, 9.64723 GHz): g =
2.00549, a(N) = 1.15 mT, a(ortho) = 0.22 mT (2H), a(meta) = 0.09
mT (2H). HPLC (C18 column, 1.2 mL minꢂ1, 7 : 3 MeOH : H2O):
Rt = 8.4 min.
y Crystal unit cell data. Formula C23H31N4O3, formula weight =
411.5, temperature = 100 K, Monoclinic, P21/c, a = 10.7221(2) A,
b = 25.4626(4) A, c = 16.9760(3) A, b = 96.8291(6)1, V = 4602(3)
A3, Z = 8, D(calc) = 1.188 g cmꢂ3, F(000) = 1768.
1. (a) J. Bernstein, M. C. Etter and L. Leiserowitz, Struct. Correl.,
1994, 2, 431; (b) P. A. Giguere, Chem. Phys. Lett., 1981, 80, 207;
(c) P. Schuster, NATO ASI Ser., Ser. C, 1978, C39, 229;
(d) K. Morokuma, Acc. Chem. Res., 1977, 10, 294;
(e) M. C. Etter, Acc. Chem. Res., 1990, 23, 120.
Fig. 2 Curie plot of doubly integrated spectral intensity of the half
field EPR band (inset) observed in the powder solid Ur6IN–DAPPN
mixture. Inset spectrum obtained at 4.8 K, 9.37359 GHz, background
subtracted after multiscan signal averaging.
2. P. Taylor, P. M. Lahti, J. B. Carroll and V. M. Rotello, Chem.
Commun., 2005, 895.
3. For use of DAP in molecular recognition, see for example
(a) J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304;
(b) J.-M. Lehn, Supramolecular chemistry: concepts and perspec-
tives, Weinheim, VCH, New York, 1995; (c) A. Niemz and
V. M. Rotello, Acc. Chem. Res., 1999, 32, 44.
present in the mixed solid if not in the individual component
solids. The complementarity of hydrogen-bonding would seem
to encourage strongly the formation of the Ur6INꢀDAPPN
complex as postulated above, or a structure very similar to
this. The three-point hydrogen-bonding set of interactions
should be a strong driving force for molecular assembly in
the solid.
4. P. Taylor, P. Serwinski and P. M. Lahti, Chem. Commun., 2003,
1400.
5. A. Niemz and V. M. Rotello, J. Am. Chem. Soc., 1997, 119, 6833.
6. Computations were carried out using the Spartan 2002 software
package for SGI computer, Wavefunction Inc., Irvine, CA.
7. Use of Q = 3 mT in the McConnell relationship gives reasonable
agreement with experimental nitrogen hfc; see ref. 4 and the
discussion in J. A. Pople and D. A Beveridge, Approximate
Molecular Orbital Theory, McGraw-Hill, New York, NY, 1970,
pp. 128–149.
8. D. Shiomi, M. Nozaki, T. Ise, K. Sato and T. Takui, J. Phys.
Chem. B, 2004, 108, 16606.
9. T. Ise, D. Shiomi, K. Sato and T. Takui, Chem. Commun., 2006,
4832.
In recent years, nitronylnitroxide and nitroxide type radicals
with attached nucleosides and related moieties have been
studied for a number of reasons.2–4,8–12 However, few of these
have been crystallized to explore their solid state assembly
behaviour as molecular one-component solids,3,4,8–10 so this
remains a relatively new area of endeavour among studies of
organic radical materials. By extension, the design of heterospin
interactions by inducing different radicals (or other open-shell
molecules) to co-crystallize offers many additional possibilities
for new solid-state behaviours, especially behaviours that are
unlikely or unable to occur in one-component solids. The
present work and related studies using complementary multi-
point hydrogen-bonding interactions have much potential
scope for solid state assembly of heteromolecular complexes
of spin-bearing organic molecules. Further work is ongoing to
study other heterospin solids related to Ur6INꢀDAPPN.
This work was supported in part by the US National Science
Foundation by grants CHE 0415716, CHE-9974648 (UMass-
Amherst X-ray Structural Characterization facility), CHE-
0443180 (UMass-Amherst Electron Paramagnetic Resonance
Facility). We thank Dr Gregory Dabkowski of the University
of Massachusetts Amherst Microanalytical Laboratory for
elemental microanalyses, and Prof. H. Nishide of Waseda
University for assistance with ESI-MS measurements.
10. K. Das, M. Pink, S. Rajca and A. Rajca, J. Am. Chem. Soc., 2006,
128, 5334.
11. (a) T. Kaneko, T. Katsurabara, Y. Matsui, M. Aso, N. Koga and
H. Suemune, Nucleic Acids Symp. Ser., 2004, 48, 5; (b) M. Aso,
T. Kaneko, M. Nakamura, N. Koga and H. Suemune, Chem.
Commun., 2003, 9, 1094; (c) M. Aso, T. Ikeno, K. Norihisa,
M. Tanaka, N. Koga and H. Suemune, J. Org. Chem., 2001, 66,
3513; (d) M. Aso, K. Norihisa, M. Tanaka, N. Koga and
H. Suemune, J. Chem. Soc., Perkin Trans. 2, 2000, 8, 1637;
(e) M. Aso, T. Ikeno, T. Kaneko, N. Koga and H. Suemune,
Nucleic Acids Res. Suppl., 2001, 1, 115.
12. (a) N. Barhate, P. Cekan, A. P. Massey and S. Th. Sigurdsson,
Angew. Chem., Int. Ed., 2007, 46, 2655–2658; (b) A. Okamoto,
T. Inasaki and I. Saito, Tetrahedron Lett., 2005, 46, 791; (c) J. M.
J. Tronchet, G. Zosimo-Landolfo, M. Balkadjian, A. Ricca,
M. Zsely, F. Barbalat-Rey, D. Cabrini, P. Lichtle and
M. Geoffroy, Tetrahedron Lett., 1991, 32, 4129; (d) M. J.
M. Tronchet, K. Mekhael, J. Graf-Poncet, R. Benhamza and
M. Geoffroy, Helv. Chim. Acta, 1985, 68, 1893; (e) J. L. Duh and
A. M. Bobst, Helv. Chim. Acta, 1991, 74, 739; (f) J. Gajewska,
A. Bierzynski, K. Bolewska, K. L. Wierzchowski, A. I. Petrov and
B. I. Sukhorukov, Biophys. Chem., 1982, 15, 191; (g) A. Hakam,
I. E. Thomas and A. M. Bobst, Int. J. Biol. Macromol., 1980, 2, 49.
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3441–3443 | 3443