A Cholesterol Containing pH-Sensitive Bistable [2]Rotaxane
Corsaro, G. Romeo, Curr. Org. Chem. 2012, 16, 127–160; c) W.
Yang, Y. Li, H. Liu, L. Chi, Y. Li, Small 2012, 8, 504–516.
[5] a) S. Saha, J. F. Stoddart, Chem. Soc. Rev. 2007, 36, 77–92; b)
D.-H. Qu, H. Tian, Curr. Phys. Chem. 2011, 1, 261–274; c) A.
Credi, S. l Silvi, M. Venturi, Photochemically Driven Molecular
Devices and Machines, in: Supramolecular Chemistry – From
Molecules to Nanomaterials (Eds.: P. A: Gale, J. W. Steed),
Wiley-VCH, Chichester, UK, 2012, vol. 8, 3719–3750; d) P.
Ceroni, A. Credi, M. Venturi, Chem. Soc. Rev. 2014, 43, 4068–
4083.
[6] a) B. Champin, P. Mobian, J.-P. Sauvage, Chem. Soc. Rev. 2007,
36, 358–366; b) C. A. Nijhuis, B. J. Ravoo, J. Huskens, D. N.
Reinhoudt, Coord. Chem. Rev. 2007, 251, 1761–1780; c) A. C.
Fahrenbach, C. J. Bruns, D. Cao, J. F. Stoddart, Acc. Chem.
Res. 2012, 45, 1581–1592; d) A. Coskun, J. M. Spruell, G. Ba-
rin, W. R. Dichtel, A. H. Flood, Y. Y. Botros, J. F. Stoddart,
Chem. Soc. Rev. 2012, 41, 4827–4859; e) A. C. Fahrenbach,
C. J. Bruns, H. Li, A. Trabolsi, A. Coskun, J. F. Stoddart, Acc.
Chem. Res. 2014, 47, 482–493.
9 H, Ha), 3.94–3.98 (m, 4 H, Hy, Hx) 4.03–4.12 (m, 8 H, HCH2, W),
3
4.23 (s, 3 H, NCH3) 4.52–4.55 (m, 4 H, Hk, Hm), 4.71 (t, Jr,s
5.0 Hz, 2 H, Hr) 6.72 (d, Jp,o = 8.6 Hz, 2 H, Hp), 6.77 (d, Jc,d
=
=
3
3
8.9 Hz, 6 H, Hc), 6.78–6.81 (m, 4 H, HAr, W), 6.87–6.90 (m, 4 H,
3
3
H
Ar, W), 7.05 (d, Jd,c = 8.9 Hz, 6 H, Hd), 7.15 (d, Ji,h = 8.6 Hz, 2
3
3
H, Hi)*, 7.18 (d, Jh,i = 8.6 Hz 2 H, Hh)*, 7.21 (d, Jo,p = 8.6 Hz,
2 H, Ho) 7.41–7.47 (br., 2 H, Hl), 8.39 (s, 1 H, Hw) ppm (* assign-
ment of signals might be interchanged). 13C NMR (125.8 MHz,
CD2Cl2, 293 K): δ = 12.0, 14.2, 18.9, 19.5, 21.4, 22.7, 22.9, 23.1,
23.3, 23.8, 24.2, 24.6, 27.3, 28.4, 28.5, 30.0, 30.1, 32.2, 32.3, 36.2,
36.5, 37.1, 37.3, 37.9, 39.1, 39.9, 40.1, 42.6, 50.5, 52.3, 52.6, 54.8,
55.6, 56.8, 57.1, 63.2, 64.9, 67.4, 68.7, 70.6, 71.0, 80.1, 113.1, 113.2,
114.8, 122.0, 122.3, 123.9, 128.8, 129.0, 129.8, 131.3, 131.4, 132.1,
139.4, 140.7, 144.8, 148.0, 149.3, 158.0, 159.7 ppm (an individual
assignment of the signals was not possible). 19F NMR (282.4 MHz,
CD2Cl2, 293 K): δ = –152.98 (br., 10BF4), –153.04 (m, 11BF4) ppm.
MS (ESI): m/z (%) = 772.5 (100) [C96H128N4O13 – 2BF4–]2+, 1633.0
– +
(7) [C96H128N4O13 – BF4 ] . HRMS (ESI): m/z (%) calcd. for
[7]
[8]
[9]
K. C.-F. Leung, C.-P. Chak, C.-M. Lo, W.-Y. Wong, S. Xuan,
C. H. K. Cheng, Chem. Asian J. 2009, 4, 364–381.
C. J. Bruns, J. F. Stoddart, Acc. Chem. Res. 2014, 47, 2186–
2199.
a) K. K. Cotí, M. E. Belowich, M. Liong, M. W. Ambrogio,
Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Kashab, J. F. Stod-
dart, Nanoscale 2009, 1, 16–39; b) M. W. Ambrogio, C. R.
Thomas, Y.-L. Zhao, J. I. Zink, J. F. Stoddart, Acc. Chem. Res.
2011, 44, 903–913; c) P. Yang, S. Gai, J. Lin, Chem. Soc. Rev.
2012, 41, 3679–3698.
[C96H128N4O13]2+ 772.9750; found 772.9747: calcd. for
[C96H128N4O13BF4]+ 1631.9506; found 1631.9522.
Rotaxane·1: Aq. NaOH (1 mL, 1 m) was added to a solution of
1·HBF4 (7 mg, 4.32ϫ10–3 mmol, 1.0 equiv.) in CH2Cl2 (0.7 mL)
and the mixture was stirred at room temperature for 1 h. The reac-
tion mixture was diluted with CH2Cl2 (10 mL), the layers sepa-
rated, and the aqueous layer extracted with CH2Cl2 (10 mL). The
combined organic layers were dried with MgSO4, and concentrated
under reduced pressure to afford rotaxane 1 as a yellow solid (7 mg,
[10]
[11]
Y.-W. Yang, Y.-L. Sun, N. Song, Acc. Chem. Res. 2014, 47,
1
1950–1960.
quant.). H NMR (500.1 MHz, CD2Cl2, 293 K): δ = 0.69 (s, 3 H,
Y.-L. Zhao, I. Aprahamian, A. Trabolsi, N. Erina, J. F. Stod-
dart, J. Am. Chem. Soc. 2008, 130, 6348–6350.
Hcholesterol) 0.86–2.34 (m, 42 H, Hcholesterol, Hs, Ht), 3.16–3.23 (m, 1
H, Hz), 3.59–4.12 (m, 46 H, Ha, Hk, Hm, Hr, Hu, Hx, Hy, HCH2, W
,
[12]
[13]
Z.-J. Zhang, Y. Liu, Synlett 2012, 23, 1733–1750.
a) M.-V. Martínez-Díaz, N. Spencer, J. F. Stoddart, Angew.
Chem. Int. Ed. Engl. 1997, 36, 1904–1907; Angew. Chem. 1997,
109, 1991–1994; b) P. R. Ashton, R. Ballardini, V. Balzani, I.
Baxter, A. Credi, M. C. T. Fyfe, M. T. Gandolfi, M. Gómez-
López, M.-V. Martínez-Díaz, A. Piersanti, N. Spencer, J. F.
Stoddart, M. Venturi, A. J. P. White, D. J. Williams, J. Am.
Chem. Soc. 1998, 120, 11932–11942.
NCH3), 4.80–5.05 (br., 1 H, Hl), 6.73–6.90 (m, 16 H, Hc, Hp, HAr,
3
3
W), 7.09 (d, Jd,c = 8.7 Hz, 6 H, Hd), 7.14 (d, Ji,h = 8.2 Hz, 2 H,
3
3
Hi)*, 7.20 (d, Jh,i = 8.2 Hz, 2 H, Hh)*, 7.26 (d, Jo,p = 8.1 Hz, 2
H, Ho), 8.76 (s, 1 H, Hw) ppm (* assignment of the signals might
be interchanged). 13C NMR (125.8 MHz, CD2Cl2, 293 K): δ =
12.0,14.2, 15.5, 18.9, 19.5, 21.4, 22.7, 22.9, 23.1, 24.2, 24.6, 28.4,
28.6, 32.2, 32.3, 36.2, 36.6, 37.1, 37.5, 39.9, 40.2, 42.7, 50.6, 55.5,
56.6, 57.2, 66.0, 68.7, 70.4, 71.4, 79.9, 112.4, 113.0, 113.1, 114.4,
121.4, 127.4, 129.7, 130.7, 131.1, 132.2, 133.1, 138.5, 139.9, 146.7,
148.1, 157.9 ppm (an individual assignment of the signals was not
[14]
a) C.-F. Lin, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu,
Chem. Eur. J. 2007, 13, 4350–4355; b) C.-J. Chuang, W.-S. Li,
C.-C. Lai, Y.-H. Liu, S.-H. Peng, I. Chao, S.-H. Chiu, Org.
Lett. 2009, 11, 385–388.
possible). MS (ESI): m/z (%) = 772.5 (100) [C96H127N4O13 + H]2+
,
[15]
[16]
F. Coutrot, E. Busseron, Chem. Eur. J. 2009, 15, 186–190.
T. Ogoshi, D. Yamafuji, T. Aoki, K. Kitajima, T. Yamagishi,
Y. Hayashi, S. Kawauchi, Chem. Eur. J. 2012, 18, 7493–7500.
B. Hesseler, M. Zindler, R. Herges, U. Lüning, Eur. J. Org.
Chem. 2014, 3885–3901.
a) F. Coutrot, C. Romuald, E. Busseron, Org. Lett. 2008, 10,
3741–3744; b) E. Busseron, C. Romuald, F. Coutrot, Chem.
Eur. J. 2010, 16, 10062–10073.
1544.1 (6) [C96H127N4O13]+. HRMS (ESI): m/z calcd. for
[C96H127N4O13]+ 1544.9427; found 1544.9423.
[17]
[18]
Acknowledgments
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) is gratefully acknowledged.
[19]
a) Q. Jiang, H.-Y. Zhang, M. Han, Z.-J. Ding, Y. Liu, Org.
Lett. 2010, 12, 1728–1731; b) Z.-J. Zhang, M. Han, H.-Y.
Zhang, Y. Liu, Org. Lett. 2013, 15, 1698–1701.
[1] B. L. Feringa, W. R. Browne (Eds.), Molecular Switches, 2nd
ed., Wiley-VCH, Weinheim, Germany, 2011.
[20]
[21]
Y. Jiang, J.-B. Guo, C.-F. Chen, Org. Lett. 2010, 12, 4248–4251.
G. T. Spence, M. B. Pitak, P. D. Beer, Chem. Eur. J. 2012, 18,
7100–7108.
[2] a) V. Balzani, A. Credi, F. Raymo, J. F. Stoddart, Angew. Chem.
Int. Ed. 2000, 39, 2248–2291; Angew. Chem. 2000, 112, 3485–
3530; b) T. Kelley, Molecular Machines, Top. Curr. Chem. 2005,
262; c) K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377–1400;
d) R. E. Kay, D. A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed.
2007, 46, 72–191; Angew. Chem. 2007, 119, 72–196; e) V. Balz-
ani, A. Credi, M. Venturi, Molecular Devices and Machines -
Concepts and Perspectives for the Nanoworld, 2nd ed., Wiley-
VCH, Weinheim, Germany, 2008.
[3] S. F. M. van Dongen, S. Cantekin, J. A. A. W. Elemans, A. E.
Rowan, R. J. M. Nolte, Chem. Soc. Rev. 2014, 43, 99–122.
[4] a) A. Rescifina, C. Zagni, D. Iannazzo, P. Merino, Curr. Org.
Chem. 2009, 13, 448–481; b) A. Rescifina, U. Chiacchio, A.
[22]
[23]
[24]
[25]
V. Blanco, A. Carlone, K. D. Hänni, D. A. Leigh, B. Lewan-
dowski, Angew. Chem. Int. Ed. 2012, 51, 5166–5169; Angew.
Chem. 2012, 124, 5256–5259.
I. Aprahamian, O. S. Miljanic´, W. R. Dichtel, K. Isoda, T. Ya-
suda, T. Kato, J. F. Stoddart, Bull. Chem. Soc. Jpn. 2007, 80,
1856–1869.
a) W. Jiang, H. D. F. Winkler, C. A. Shalley, J. Am. Chem. Soc.
2008, 42, 13852–13853; b) D. A. Leigh, V. Marcos, M. R. Wil-
son, Compr. Asymmetric Catal. Suppl. 2014, 4, 4490–4497.
A. Tanatani, T. S. Hughes, J. S. Moore, Angew. Chem. Int. Ed.
2002, 41, 325–328; Angew. Chem. 2002, 114, 335–338.
ˇ
Eur. J. Org. Chem. 2015, 5966–5978
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5977