R. Ingenito et al. / Bioorg. Med. Chem. Lett. 20 (2010) 236–239
239
Having identified peptide 15 as the most potent analog, we fur-
References and notes
ther explored its mechanism of action. Pre-b-HDL particles (‘nas-
cent HDL’) have been shown to play a key role in RCT5, and D-4F
in particular has been shown to cause an increase in pre-b-HDL.5
When peptides 1 and 15 were incubated in plasma for 2 h at
37 °C, only peptide 15 was selectively incorporated into the HDL
lipoprotein fraction (as monitored by mass-spectrometry of each
fraction after size exclusion chromatography lipoprotein analysis,
Fig. 4).
Moreover, similarly to D-4F, peptide 15 induced an increase in
the level of pre-b-HDL particles as revealed by size exclusion chro-
matography analysis followed by ELISA with an apoA-I pre-b-spe-
cific antibody15 (Fig. 4).
In conclusion we have shown here that by using as a starting
point the consensus sequence of apoA-I, it is possible to design
apoA-I peptide mimetics able to mobilize cholesterol from macro-
phages in an ABCA1-dependent pathway, and to promote the for-
mation of ‘nascent HDL’ particles, with potency superior to other
peptide mimetics in development and, importantly, comparable
to the apoA-I protein, which is known to be efficacious in humans.
1. Linsel-Nitschke, P.; Tall, A. R. Nat. Rev. Drug Disc. 2005, 4, 193.
2. Rader, D. J. J. Clin. Invest. 2006, 116, 3090.
3. Wang, X.; Collins, H. L.; Ranalletta, M.; Fuki, I. V.; Billheimer, J. T.; Rothblat, G.
H.; Tall, A. R.; Rader, D. J. J. Clin. Invest. 2007, 117, 2216.
4. Wang, N.; Silver, D. L.; Costet, P.; Tall, A. R. J. Biol. Chem. 2000, 275, 33053.
5. (a) Rubin, E. M.; Krauss, R. M.; Spangler, E. A.; Verstuyft, J. G.; Clift, S. M. Nature
1991, 353, 265; (b) Plump, A. S.; Scott, C. J.; Breslow, J. L. Proc. Natl. Acad. Sci.
U.S.A. 1994, 91, 9607.
6. (a) Nissen, S. E.; Tsunoda, T.; Tuzcu, E. M.; Schoenhagen, P.; Cooper, C. J.; Yasin,
M.; Eaton, G. M.; Lauer, M. A.; Sheldon, W. S.; Grines, C. L.; Halpern, S.; Crowe,
T.; Blankenship, J. C.; Kerensky, R. JAMA 2003, 290, 2292; (b) Tardif, J. C.;
Heinonen, T.; Noble, S. Curr. Atheroscler. Rep. 2009, 11, 58.
7. (a) Plump, A. S.; Scott, C. J.; Breslow, J. L. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
9607; (b) Berthou, L.; Staels, B.; Saldicco, I.; Berthelot, K.; J Casey, J.; Fruchart, J.
C.; Denefle, P.; Branellec, D. Arterioscler. Thromb. Vasc. Biol. 1994, 14, 1657; (c)
Pastore, L.; Belalcazar, L. M.; Oka, K.; Cela, R.; Lee, B.; Chan, L.; Beaudet, A. L.
Gene 2004, 327, 153.
8. (a) Navab, M.; Anantharamaiah, G. M.; Reddy, S. T.; Van Lenten, B. J.; Datta, G.;
Garber, D.; Fogelman, A. M. Curr. Opin. Lipidol. 2004, 15, 645; (b) Shah, P. K.;
Chyu, K. Y. Trends Cardiovasc. Med. 2005, 15, 291.
9. (a) Segrest, J. P. FEBS Lett. 1974, 38, 247; (b) Segrest, J. P.; Jones, M. K.; De Loof,
H.; Brouillette, C. G.; Venkatachalapathi, Y. V.; Anantharamaiah, G. M. J. Lipid
Res. 1992, 33, 141; (c) Segrest, J. P.; Li, L.; Anantharamaiah, G. M.; Harvey, S. C.;
Liadaki, K. N.; Zannis, V. Curr. Opin. Lipidol. 2000, 11, 105; (d) Shah, P. K.; Kaul,
S.; Nilsson, J.; Cercek, B. Circulation 2001, 104, 2498.
Key to our success is the use of
a-alkenyl amino acids at suit-
10. (a) Datta, G.; Chaddha, M.; Hama, S.; Navab, M.; Fogelman, A. M.; Garber, D. W.;
Mishra, V. K.; Epand, R. M.; Epand, R. F.; Lund-Katz, S.; Phillips, M. C.; Segrest, J.
P.; Anantharamaiah, G. M. J. Lipid Res. 2001, 42, 1096; (b) Remaley, A. T.;
Thomas, F.; Stonik, J. A.; Demosky, S. J.; Bark, S. E.; Neufeld, E. B.; Bocharov, A.
V.; Vishnyakova, T. G.; Patterson, A. P.; Eggerman, T. L.; Santamarina-Fojo, S.;
Brewer, H. B. J. Lipid Res. 2003, 44, 828; (c) Navab, M.; Anantharamaiah, G. M.;
Srinivasa, T. R.; Hama, S.; Hough, G.; Grijalva, V. R.; Wagner, A. C.; Frank, J. S.;
Datta, G.; Garber, D.; Fogelman, A. M. Circulation 2004, 3215; (d) Natarajan, P.;
Forte, T. M.; Chu, B.; Phillips, M. C.; Oram, J. F.; Bielicki, J. K. J. Biol. Chem. 2004,
279, 24044; (e) Sethi, A. A.; Stonik, J. A.; Thomas, F.; Demosky, S. J.; Amar, M.;
Neufeld, E.; Brewer, H. B.; Davidson, W. S.; D’Souza, W.; Sviridov, D.; Remaley,
A. T. J. Biol. Chem. 2008, 283, 32273.
able positions of the consensus sequence.
Although more studies are required to elucidate the mechanism
of action of the apoA-I mimetic peptides described here, and to
determine whether the observed in vitro activity correlates with
an effect on atherosclerotic plaques in vivo, these results are
encouraging, and represent a step towards the development of
peptide-based therapies aimed at reducing cardiovascular risk in
humans.
Acknowledgments
11. (a) Navab, M.; Anantharamaiah, G. M.; Hama, S.; Garber, D. W.; Chaddha, M.;
Hough, G.; Lallone, R.; Fogelman, A. M. Circulation 2002, 105, 290; (b) Li, X.;
Chyu, K. Y.; Faria Neto, J. R.; Yano, J.; Nathwani, N.; Ferreira, C.; Dimayuga, P. C.;
Cercek, B.; Kaul, S.; Shah, P. K. Circulation 2004, 110, 1701.
12. Anantharamaiah, G. M.; Venkatachalapathi, Y. V.; Brouillette, C. G.; Segrest, J. P.
Arteriosclerosis 1990, 10, 95.
13. (a) Blackwell, H. E.; Grubbs, R. H. Angew. Chem., Int. Ed. 1998, 37, 3281; (b)
Schafmeister, C. E.; Po, J.; Verdine, G. L. J. Am. Chem. Soc. 2000, 122, 5891.
14. Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
15. Troutt, J. S.; Alborn, W. E.; Mosior, M. K.; Dai, J.; Murphy, A. T.; Beyer, T. P.;
Zhang, Y.; Cao, G.; Konrad, R. J. J. Lipid Res. 2008, 49, 581.
We thank Steven Harper for the helpful discussion and support,
Silvia Pesci for help with the NMR experiments and Manuela Emili
for the artwork.
Supplementary data
Supplementary data associated with this article can be found, in
16. Chen, Y. H.; Yang, J. T.; Chau, K. H. Biochemistry 1974, 13, 3350–3359.