ORGANIC
LETTERS
2008
Vol. 10, No. 21
4811-4814
L-Selectride-Mediated Highly
Diastereoselective Asymmetric
Reductive Aldol Reaction: Access to an
Important Subunit for Bioactive
Molecules
Arun K. Ghosh,* Jorden Kass, David D. Anderson, Xiaoming Xu, and
Christine Marian
Departments of Chemistry and Medicinal Chemistry, Purdue UniVersity,
West Lafayette, Indiana 47907
Received August 22, 2008
ABSTRACT
L-Selectride reduction of a chiral or achiral enone followed by reaction of the resulting enolate with optically active r-alkoxy aldehydes
proceeded with excellent diastereoselectivity. The resulting r,r-dimethyl-ꢀ-hydroxy ketones are inherent to a variety of biologically active
natural products.
Asymmetric aldol reactions leading to the stereocontrolled
generation of ꢀ-hydroxy carbonyl derivatives are among the
most important reactions in organic synthesis.1 Consequently,
a number of effective methodologies have been developed
over the years. In a series of elegant studies, Stork and co-
workers have shown that lithium-ammonia reduction of
enones leads to stoichiometric generation of enolates.2 Since
then, reductive aldol reaction in which conjugate reduction
followed by an aldol reaction of the resulting enolate led to
the development of a wide variety of methodologies for the
synthesis of ꢀ-hydroxy carbonyl derivatives.3 In recent years,
impressive progress has been made in both catalytic4 and
enantioselective5 reductive aldol processes. In the context
of our enantioselective synthesis of (+)-peloruside A, we
recently carried out an L-Selectride mediated reductive aldol
coupling of enone 1 and aldehyde 2 to provide aldol product
3 and its diastereomer as a 4:1 mixture in 92% yield at -78
°C for 1 h (Figure 1).6,7 The major aldolate 3 was
(4) For recent metal-catalyzed reductive aldol reactions, see: (a) Shiomi,
T.; Nishiyama, H. Org. Lett. 2007, 9, 1651. (b) Han, S. B.; Krische, M. J.
Org. Lett. 2006, 8, 5657. (c) Jung, C. K.; Krische, M. J. J. Am. Chem. Soc.
2006, 128, 17051. (d) Baik, T. G.; Luis, A. L.; Wang, L. C.; Krische, M. J.
J. Am. Chem. Soc. 2001, 123, 5112. (e) Lam, H. W.; Joensuu, P. M.; Murray,
G. J.; Fordyce, E. A. F.; Prieto, O.; Luebbers, T. Org. Lett. 2006, 8, 3729.
(f) Doi, T.; Fukuyama, T.; Minamino, S.; Ryu, I. Synlett 2006, 18, 3013.
(g) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem.,
Int. Ed. 2006, 45, 1292. (h) Welle, A.; Diez-Gonzalez, S.; Tinant, B.; Nolan,
S. P.; Riant, O. Org. Lett. 2006, 8, 6059. (i) Chrovian, C. C.; Montgomery,
J. Org. Lett. 2007, 9, 537, and references cited therein.
(1) Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Germany, 2004;
Vol. 1-2.
(2) (a) Stork, G.; Darling, S. D. J. Am. Chem. Soc. 1960, 82, 1512. (b)
Stork, G.; Rosen, P.; Goldman, N. L. J. Am. Chem. Soc. 1961, 83, 2965.
(c) Stork, G.; Rosen, P.; Goldman, N.; Coombs, R. V.; Tsuji, J. J. Am.
Chem. Soc. 1965, 87, 275.
(3) For recent reviews on reductive aldol reactions, see: (a) Han, S. B.;
Hassan, A.; Krische, M. J. Synthesis 2008, 17, 2669. (b) Garner, S.; Krische,
M. J. In Modern Reduction Methods; Andersson, P., Munslow, I., Eds.;
Wiley-VCH: Weinheim, 2008; p 387. (c) Nishiyama, H.; Shiomi, T. Top.
Curr. Chem. 2007, 279, 105.
(5) Bee, C.; Han, S. B.; Hassan, A.; Lida, H.; Krische, M. J. J. Am.
Chem. Soc. 2008, 130, 2746.
(6) West, L. M.; Northcote, P. T.; Battershill, C. N. J. Org. Chem. 2000,
65, 445
.
(7) Ghosh, A.; Xu, X.; Kim, J-H.; Xu, C-X. Org. Lett. 2008, 10, 1001
.
10.1021/ol801971t CCC: $40.75
Published on Web 10/03/2008
2008 American Chemical Society