F. Calo et al. / Tetrahedron Letters 50 (2009) 1566–1567
1567
tBu
yield over the two steps. Sequential benzyl ether hydrogenolysis
and tetrapropylammonium perruthenate (TPAP) oxidation9 of 12
gave lactone 3 in 92% yield over the two steps.
O
(1) H2, Pd/C
(2) HCl
O
O
9
t
CO2 Bu
Lactone 3 showed data identical10 to those reported by the Riz-
zacasa group,2,3 and this was confirmed by redetermining its X-ray
crystallographic structure (see Supplementary data). In summary,
we have reported the formal total synthesis of (ꢀ)-trachyspic acid
(1) using an Evans aldol reaction and a Seebach dioxolanone alkyl-
ation. The synthesis of lactone 3 was achieved in 21% yield over 13
steps.
O
92%
O
10
Scheme 3. Synthesis of lactone 10.
Acknowledgments
We thank GlaxoSmithKline for the generous endowment (to
A.G.M.B.), Eli Lilly and Company and the Engineering and Physical
Sciences Research Council for grant support (to F. Calo), and Peter
R. Haycock and Richard N. Sheppard, both at Imperial College, for
high-resolution NMR spectroscopy.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 2. X-ray crystallographic ORTEP structure of lactone 10.
1. Hirai, K.; Ooi, H.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 857–
859.
2. Zammit, S. C.; White, J. M.; Rizzacasa, M. A. Org. Biomol. Chem. 2005, 3, 2073–
2074.
3. Zammit, S. C.; Ferro, V.; Hommond, E.; Rizzacasa, M. A. Org. Biomol. Chem. 2007,
5, 2826–2834.
4. Calo, F.; Richardson, J.; Barrett, A. G. M. J. Org. Chem. 2008, 73, 9692–9697.
5. Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434–9453.
6. Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. Ed. 1996, 35, 2708–
2748.
.
tBuO2C OH
(1) LiOH
BF3 OEt2,
MeOH
MeO2C OH
t
CO2 Bu
CO2Me (2) 13
9
t
90%
72%
CO2 Bu
OBn
CO2Me
OBn
12
11
(1) H2, Pd/C
(2) TPAP, NMO
4 steps
7. Crystal data for 10: C17H26O7, M = 342.38, orthorhombic, P212121 (no. 19),
(-)-trachyspic acid (1)
a = 5.94340(11), b = 13.4581(3), c = 22.8780(4) Å, V = 1829.94(6) Å3, Z = 4,
3
Dc = 1.243 g cmꢀ3 ) = 0.096 mmꢀ1, T = 173 K, colorless block needles,
, l(Mo-Ka
92%
OtBu
Oxford Diffraction Xcalibur 3 diffractometer; 6146 independent measured
reflections, F2 refinement, R1 = 0.037, wR2 = 0.080, 3909 independent observed
absorption-corrected reflections [|Fo| > 4r(|Fo|), 2hmax = 65°], 217 parameters.
The absolute structure of 10 could not be determined by either R-factor tests
N
N
H
[Rþ1 ¼ 0:0366, Rꢀ1 ¼ 0:0366] or by use of the Flack parameter [x+ = +0.0(6),
ꢀ = +1.0(6)], and so it was assigned based on the known stereochemistry at
13
x
C(6). CCDC 704898.
8. Papke, M.; Schulz, S.; Tichy, H.; Gingl, E.; Ehn, R. Angew. Chem., Int. Ed. 2000, 39,
4339–4341.
Scheme 4. Synthesis of key lactone 3.
9. Griffith, W. P.; Ley, S. V. Aldrichim. Acta 1990, 23, 13–19.
10. Analytical data for lactone 3: ½a D25
ꢁ
ꢀ15.1 (c 1, CH2Cl2); IR (KBr) 1803, 1735,
1369, 1251, 1147, 1066, 842 cmꢀ1
;
1H NMR (400 MHz, CDCl3) d 3.40 (dd,
Alternatively, dioxolanone 9 was smoothly ring-opened using
boron trifluoride diethyl etherate in methanol at reflux in a sealed
tube,8 which gave the triester 11 (Scheme 4). Lithium hydroxide-
mediated saponification gave the corresponding tricarboxylic acid,
which was directly re-esterified using freshly prepared N,N0-di-iso-
propyl-O-t-butylisourea (13) to afford tri-tert-butyl ester 12 in 72%
J = 8.6, 3.8 Hz, 1H), 3.08 (d, J = 17.3 Hz, 1H), 2.88 (d, J = 17.3 Hz, 1H), 2.84 (dd,
J = 17.8, 8.3 Hz, 1H), 2.76 (dd, J = 17.5, 3.8 Hz, 1H), 1.49 (s, 9H), 1.48 (s, 9H), 1.45
(s, 9H); 13C NMR (100 MHz, CDCl3) d 174.0, 169.0, 168.3, 167.7, 83.7, 83.7, 83.2,
82.0, 47.6, 39.0, 32.1, 28.0, 27.9, 27.7; HRMS (ESI) calcd for C20H32O8Na:
(M+Na)+, 423.1995, found: (M+Na)+, 423.2004.