4938
Y. Wang et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4936–4939
Table 1
Table 3
SAR of the amino side-chain moiety
cat UT binding and hUT FLIPR data
2 R
N
15
cat UT binding pKia
hUT FLIPR pA2
1 R
Compound
4
6.2
6.4
6.7
5.9
5.8
5.6
6.0
5.5
6.0
7.0
—
—
7.0
—
6.9
7.7
6.8
—
N
9c
9d
9f
9g
9i
9m
9o
11a
N
H
Compound
1R-N-2R
hUT binding (pKi)a
9a
9b
4
Et-NH
Pr-NH
Bu-NH
5.8
7.6
8.4
8.4
8.2
6.1
8.0
7.9
5.6
8.2
<5.1
8.0
<5.1
7.9
7.0
7.6
7.7
7.9
7.1
a
Mean of at least two determinations; pKi was calculated from Ki using formula,
pKi = ÀlogKi; for Ki determination, see Ref. 9e.
9c
9d
9e
9f
9g
9h
9i
Pent-NH
Hex-NH
(1-Me)Bu-NH
(2-Me)Bu-NH
(3-Me)Bu-NH
c-Pr-NH
c-Pr-CH2-NH
c-Hex-NH
M1, M2, M3, M4, M5, CXCR2) and about 400-fold selective for
hUT over hERG (binding pIC50 = 5.8). However, compound
showed potent cytochrome P450 inhibition of the 2D6 (pIC50
4
=
9j
8.1) and 3A4 (pIC50 = 7.0) isoforms. In an in vivo rat iv/po pharma-
cokinetic (PK) study (0.49 mg/kg iv, 0.97 mg/kg po), compound 4
showed high clearance, short half life, and low oral bioavailability
(Clb = 110 mL/min/kg, T1/2 = 1.3 h, F = 11%).
In summary, we discovered a novel series of N-alkyl-5H-pyr-
ido[4,3-b]indol-1-amines and derivatives as urotensin-II receptor
antagonists. Tractable SAR was demonstrated through analog syn-
thesis. The compounds in the series exhibited high hUT binding
affinity and functional and ortholog activities. The preliminary data
suggests that this series constitutes a reasonable starting point for
further lead optimization.
9k
9l
c-Hex-CH2-NH
Ph-NH
9m
9n
9o
9p
9q
9r
9s
9t
9u
9v
9w
9x
Bn-NH
Ph-(CH2)2-NH
thienyl-CH2-NH
(2-OMe)Et-NH
(2-OEt)Et-NH
(tetrahydro-2-furanyl)-CH2-NH
[2-N(Me)2]Et-NH
[2-(4-morpholinyl)]Et-NH
(2-acetylamino)Et-NH
(2-aminocarbonyl)Et-NH
(2-OMe)Et-NMe
<5.1
<5.1
<5.1
<5.1
<5.1
6.1
(Bu)2N
References and notes
a
Mean of at least two determinations; pKi was calculated from Ki using formula,
pKi = ÀlogKi; for Ki determination, see Ref. 9e.
1. Ames, R. S.; Sarau, H. M.; Chambers, J. K.; Willette, R. N.; Aiyar, N. V.; Romanic,
A. M.; Louden, C. S.; Foley, J. J.; Sauermelch, C. F.; Coatney, R. W.; Ao, Z.; Disa, J.;
Holmes, S. D.; Stadel, J. M.; Martin, J. D.; Liu, W. S.; Glover, G. I.; Wilson, S.;
McNulty, D. E.; Ellis, C. E.; Elshourbagy, N. A.; Shabon, U.; Trill, J. J.; Hay, D. W.;
Ohlstein, E. H.; Bergsma, D. J.; Douglas, S. A. Nature 1999, 401, 282.
2. Douglas, S. A.; Dhanak, D.; Johns, D. G. Trends Pharmacol. Sci. 2004, 25, 76.
3. (a) Matsushita, M.; Shichiri, M.; Imai, T.; Iwashina, M.; Tanaka, H.; Takasu, N.;
Hirata, Y. J. Hypertens. 2001, 19, 2185; (b) Cheung, B. M.; Leung, R.; Man, Y. B.;
Wong, L. Y. J. Hypertens. 2004, 22, 1341.
Table 2
SAR of the 3R, 4R, and pyridine regions
2 R
N
1 R
2
1
X
9
6
4. Russell, F. D.; Meyers, D.; Galbraith, A. J.; Bett, N.; Toth, I.; Kearns, P.; Molenaar,
P. Am. J. Physiol. 2003, 285, H1576.
3
4 R8
7
Y4
5. (a) Douglas, S. A.; Tayara, L.; Ohlstein, E. H.; Halawa, N.; Giaid, A. Lancet 2002,
359, 1990; (b) Ng, L. L.; Loke, I.; O’Brien, R. J.; Squire, I. B.; Davies, J. E. Circulation
2002, 106, 2877;; (c) Richards, A. M.; Nicholls, M. G.; Lainchbury, J. G.; Fisher,
S.; Yandle, T. G. Lancet 2002, 360, 545;; (d) Lapp, H.; Boerrigter, G.; Costello-
Boerrigter, L. C.; Jaekel, K.; Scheffold, T.; Krakau, I.; Schramm, M.; Guelker, H.;
Stasch, J. P. Int. J. Cardiol. 2004, 94, 93.
N
3 R
5
Compound
X
Y
1R-N-2R
3R
4R
hUT binding (pKi)a
4
N
N
N
N
C
C
C
C
C
C
C
C
C
C
C
N
N
N
N
N
N
N
Bu-NH
Bu-NH
Bu-NH
Bu-NH
Bu-NH
(2-MeO)Et-NH
c-Pr-CH2-NH
c-Hex-CH2-NH
Bu-NH
H
H
H
H
H
H
H
H
H
8.4
7.3
7.2
5.4
7.1
6.5
7.0
6.1
7.2
7.3
7.5
6. (a) Bousette, N.; Patel, L.; Douglas, S. A.; Ohlstein, E. H.; Giaid, A. Atherosclerosis
2004, 176, 117; (b) Maguire, J. J.; Kuc, R. E.; Wiley, K. E.; Kleinz, M. J.; Davenport,
A. P. Peptides 2004, 25, 1767.
7. (a) Totsune, K.; Takahashi, K.; Arihara, Z.; Sone, M.; Satoh, F.; Ito, S.; Kimura, Y.;
Sasano, H.; Murakami, O. Lancet 2001, 358, 810; (b) Shenouda, A.; Douglas, S.
A.; Ohlstein, E. H.; Giaid, A. J. Histochem. Cytochem. 2002, 50, 885; (c) Langham,
R. G.; Gow, R.; Thomson, N. M.; Dowling, J. K.; Gilbert, R. E. Am. J. Kidney Dis.
2004, 44, 826.
11a
11b
11c
14d
14e
14f
14g
14h
14i
14j
Me
iPr
Bn
H
H
H
H
H
H
H
8. (a) Totsune, K.; Takahashi, K.; Arihara, Z.; Sone, M.; Satoh, F.; Ito, S.; Murakami,
O. Clin. Sci. 2003, 104, 1; (b) Wenyi, Z.; Suzuki, S.; Hirai, M.; Hinokio, Y.;
Tanizawa, Y.; Matsutani, A.; Satoh, J.; Oka, Y. Diabetologi 2003, 46, 972.
9. (a) Flohr, S.; Kurz, M.; Kostenis, E.; Brkovich, A.; Fournier, A.; Klabunde, T. J.
Med. Chem. 2002, 45, 1799; (b) Croston, G. E.; Olsson, R.; Currier, E. A.; Burstein,
E. S.; Weiner, D.; Nash, N.; Severance, D.; Allenmark, S. G.; Thunberg, L.; Ma, J.;
Mohell, N.; O’Dowd, B.; Brann, M. R.; Hacksell, U. J. Med. Chem. 2002, 45, 4950;
(c) Clozel, M.; Binkert, C.; Birker-Robaczewska, M.; Boukhadra, C.; Ding, S.;
Fischli, W.; Hess, P.; Mathys, B.; Morrison, K.; Muller, C.; Muller, C.; Nayler, O.;
Qiu, C.; Rey, M.; Scherz, M. W.; Velker, J.; Weller, T.; Xi, J.; Ziltener, P. J.
Pharmacol. Exp. Ther. 2004, 311, 204; (d) Jin, J.; Dhanak, D.; Knight, S. D.;
Widdowson, K.; Aiyar, N.; Naselsky, D.; Sarau, H. M.; Foley, J. J.; Schmidt, D. B.;
Bennett, C. D.; Wang, B.; Warren, G. L.; Moore, M. L.; Keenan, R. M.; Rivero, R.
A.; Douglas, S. A. Bioorg. Med. Chem. Lett. 2005, 15, 3229; (e) Douglas, S. A.;
Behm, D. J.; Aiyar, N. V.; Naselsky, D.; Disa, J.; Brooks, D. P.; Ohlstein, E. H.;
Gleason, J. G.; Sarau, H. M.; Foley, J. J.; Buckley, P. T.; Schmidt, D. B.; Wixted, W.
E.; Widdowson, K.; Riley, G.; Jin, J.; Gallagher, T. F.; Schmidt, S. J.; Ridgers, L.;
Christmann, L. T.; Keenan, R. M.; Knight, S. D.; Dhanak, D. Br. J. Pharmacol. 2005,
145, 620; (f) Lehmann, F.; Pettersen, A.; Currier, E. A.; Sherbukhin, V.; Olsson, R.;
Hacksell, U.; Luthman, K. J. Med. Chem. 2006, 49, 2232; (g) Luci, D. K.; Ghosh, S.;
8-Me
8-Cl
6-OMe
Bu-NH
Bu-NH
a
Mean of at least two determinations; pKi was calculated from Ki using formula,
pKi = ÀlogKi; for Ki determination, see Ref. 9e.
Exemplars in the series exhibited good physicochemical proper-
ties. For example, compound 4 had good aqueous solubility
(195 l
M) and artificial membrane permeability (470 nm/s).18 For
selectivity, compound 4 showed at least 100-fold selectivity vs a
number of 7TM receptors (5HT1A, 5HT1B, 5HT1D, 5HT2A, 5HT2C,
5HT3, 5H4A, 5HT6, 5HT7, Histamine H1, Histamine H3, Dopamine
D2, Dopamine D3, Adrenergic alpha 1A, Adrenergic alpha 1B,
Adrenergic beta 2, Adenosine A1, Adenosine A2a, Adenosine A2b,