Organic Letters
Letter
Tetrahedron Lett. 2018, 59, 3077−3079. (e) Frontier, A. J.; Raghavan,
S.; Danishefsky, S. J. J. Am. Chem. Soc. 2000, 122, 6151−6159.
(2) (a) Ding, Z.; Zhang, Y.; Liu, M.; Sugiya, M.; Imamoto, I.; Zhang,
W. Org. Lett. 2013, 15, 3690−3693. (b) Gomez-Lopez, J. L.; Chavez,
D.; Parra-Hake, M.; Royappa, A. T.; Rheingold, A. L.; Grotjahn, D. B.;
Miranda-Soto, V. Organometallics 2016, 35, 3148−3153. (c) Baan, Z.;
Finta, Z.; Keglevich, G.; Hermecz, I. Green Chem. 2009, 11, 1937−
1940. (d) Jagtap, S.; Kaji, Y.; Fukuoka, A.; Hara, K. Chem. Commun.
2014, 50, 5046−5048. (e) Broggi, J.; Jurcik, V.; Songis, O.; Poater, A.;
Cavallo, L.; Slawin, A. M. Z.; Cazin, C. S. J. J. Am. Chem. Soc. 2013,
135, 4588−4591. (f) Lator, A.; Gaillard, S.; Poater, A.; Renaud, J.-L.
Chem. - Eur. J. 2018, 24, 5770−5774.
Scheme 8. Plausible Mechanism for the Selective Reduction
of C=C of α,β-Unsaturated Carbonyl Compound
(3) (a) Sun, C. L.; Shi, Z. J. Chem. Rev. 2014, 114, 9219−9280.
(b) Garrett, C.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(4) (a) Taschner, M. J.; Shahripour, A. J. Am. Chem. Soc. 1985, 107,
5570−5572. (b) Ling, T.; Chowdhury, C.; Kramer, B. A.; Vong, B. G.;
Palladino, M. A.; Theodorakis, E. A. J. Org. Chem. 2001, 66, 8843−
8853.
(5) Hudlicky, T.; Sinai-Zingde, G.; Natchus, M. G. Tetrahedron Lett.
1987, 28, 5287−5290.
(6) (a) Davies, S. G.; Rodriguez-Solla, H.; Tamayo, J. A.; Garner, A.
C.; Smith, A. D. Chem. Commun. 2004, 2502−2503. (b) Dahlen, A.;
Hilmersson, G. Chem. - Eur. J. 2003, 9, 1123−1128. (c) Davies, S. G.;
Rodrıguez-Solla, H.; Tamayo, J. A.; Cowley, A. R.; Concellon, C.;
Garner, A. C.; Parkes, A. L.; Smith, A. D. Org. Biomol. Chem. 2005, 3,
1435−1447. (d) Keck, G. E.; McLaws, M. D. Tetrahedron Lett. 2005,
46, 4911−4914.
(7) Li, J.; Zhang, Y.-X.; Ji, Y. J. J. Chin. Chem. Soc. 2008, 55, 390−
393.
acid for the first time. The reaction is an easy and user-friendly
alternative to the dissolving metal reductions. The mechanistic
investigation suggested that the reaction follows a concerted
proton and electron transfer or CPET pathway. Importantly,
this new reaction methodology indicates that a small
nucleophilic organic molecule can be used as a SET reducing
agent in the presence of a proper proton source such as
HCO2H.
(8) (a) Broggi, J.; Terme, T.; Vanelle, P. Angew. Chem., Int. Ed. 2014,
53, 384−413. (b) Murphy, J. A. J. Org. Chem. 2014, 79, 3731−3746.
(9) (a) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010,
110, 6961−7001. (b) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res.
2016, 49, 1546−1556. (c) Hoffmann, N. Eur. J. Org. Chem. 2017,
2017, 1982−1992.
(10) Young, E. R.; Rosenthal, J.; Hodgkiss, J. M.; Nocera, D. G. J.
Am. Chem. Soc. 2009, 131, 7678−7684.
(11) (a) Markle, T. F.; Darcy, J. W.; Mayer, J. M. Sci. Adv. 2018, 4,
eaat5776. (b) Kolmar, S. S.; Mayer, J. M. J. Am. Chem. Soc. 2017, 139,
10687−10692. (c) Chciuk, T.; Anderson, W. R.; Flowers, R. A. J. Am.
Chem. Soc. 2016, 138, 8738−8741. (d) Tarantino, K. T.; Liu, P.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022−10025.
(12) (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
2011, 40, 102−113. (b) Teply, F. Czech, Collect. Collect. Czech.
Chem. Commun. 2011, 76, 859−917. (c) Chmielewski, T.; Lekki, J.
Miner. Eng. 1989, 2, 387−391. (d) Zohir, N.; Mustapha, B.; Elbaki, D.
A. J. Miner. Mater. Charact. Eng. 2009, 8, 469−477.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Detailed experimental procedures, characterization data,
and copies of NMR spectra (PDF)
(13) LaLonde, R. T.; Codacovi, L.; He, C. H.; Xu, C. F.; Clardy, J.;
Krishnan, B. S. J. Org. Chem. 1986, 51, 4899−4905.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(14) E-Selectivity is confirmed by melting point of commercially
available E-stilbin and also by crude NMR of (E)-1-methyl-4-
styrylbenzene.
́
(15) Costentin, C.; Evans, D. H.; Robert, M.; Saveant, J. M.; Singh,
P. S. J. Am. Chem. Soc. 2005, 127, 12490.
Notes
(16) (a) Cukier, R. I.; Nocera, D. G. Annu. Rev. Phys. Chem. 1998,
49, 337. (b) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C.
F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D.
G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016.
(17) Kolmar, S. S.; Mayer, J. M. J. J. Am. Chem. Soc. 2017, 139,
10687−10692.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
G.S and S.G thank IIT Madras for the IRDA project. We thank
DST-FIST (for instrumentation facilities and HPCE) and IIT
Madras (for computational facilities). R.P. thanks DST-SERB
for NPDF.
(19) (a) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−
̌
́
241. (b) Ljubic, I.; Sabljic, A.; Bonifacic, M. J. Phys. Chem. B 2016,
120, 11810−11820. (c) Jacob, G. V.; Sutradhar, S.; Patnaik, A. New J.
Chem. 2016, 40, 7431−7436. (d) Meyer, T. J.; Huynh, M. H. V.;
Thorp, H. H. Angew. Chem., Int. Ed. 2007, 46, 5284−5304.
REFERENCES
■
(1) (a) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621−6686.
(b) Leutenegger, U.; Madin, A.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1989, 28, 60−61. (c) Odendaal, A. Y.; Trader, D. J.; Carlson, E. E.
Chem. Sci. 2011, 2, 760−764. (d) Perez, I.; Avila-Zarraga, J. G.
D
Org. Lett. XXXX, XXX, XXX−XXX