Notes and references
z Crystal data for [4(H2O)]ClO4, C25H24ClNO7.50PPd, M = 631.30,
monoclinic, C2/c,
14.7100(17) A,
a
=
=
18.345(2) A,
b
=
22.576(3) A,
901;
c
V
=
=
.
a
901, 122.192(2)1,
b
=
g
=
5155.7(11) A3, Z = 8, Dcalc = 1.619 g cmꢀ1, m(Mo-Ka) = 0.933 mmꢀ1
Purple prism, (0.30 ꢃ 0.20 ꢃ 0.20) mm3. 24 303 measured reflections,
4531 independent (Rint = 0.0428), 3884 observed (I 4 2s(I)). R1
0.0596, wR2 = 0.1529 (all data). CCDC 675181.
=
Fig. 5 Colour changes of 3 on silica before and after addition of
Hg2+ and then 5.
1 (a) W. F. Fitzgerald, C. H. Lamborg and C. R. Hammerschmidt,
Chem. Rev., 2007, 107, 641; (b) I. Onyido, A. R. Norris and E.
equimolecular solution of [4(H2O)]ClO4 and MeHgCl in
EtOH–H2O 1 : 1 with 5. From the titration profile, we
considered that the first equivalent of 5 was needed to equili-
brate the different palladium complexes and we represented
the titration profile after addition of one equivalent of 5, that
was adjusted to a 1 : 1 model, from which a constant: log K =
Buncel, Chem. Rev., 2004, 104, 5911; (c) H. Strasdeit, A. von Dollen,
¨
W. Saak and M. Wilhelm, Angew. Chem., Int. Ed., 2000, 39, 784.
2 (a) S. G. Capar, W. R. Mindak and J. Cheng, Anal. Bioanal. Chem.,
2007, 389, 159; (b) P. Kuba
and V. Kuban, Electrophoresis, 2007, 28, 58; (c) B. R. Vermillion
n, P. Houserova, P. Kuban, P. C. Hauser
´ ´ ´
´
and R. J. M. Hudson, Anal. Bioanal. Chem., 2007, 388, 341.
3 (a) S. Yoon, A. E. Albers, A. P. Wong and C. J. Chang, J. Am.
Chem. Soc., 2005, 127, 16030; (b) S. Yoon, E. W. Miller, Q. He, P.
H. Do and C. J. Chang, Angew. Chem., Int. Ed., 2007, 46, 6658; (c)
S.-K. Ko, Y.-K. Yang, J. Tae and I. Shin, J. Am. Chem. Soc., 2006,
128, 14150.
4 (a) X. Xue, F. Wang and X. Liu, J. Am. Chem. Soc., 2008, 130,
3244; (b) J.-S. Lee, M. S. Han and C. A. Mirkin, Angew. Chem., Int.
Ed., 2007, 46, 4093; (c) S. Tatay, P. Gavina, E. Coronado and E.
Palomares, Org. Lett., 2006, 8, 3857; (d) E. Coronado, J. R.
4.67 ꢂ 0.21 was obtained. The detection limit of a 10ꢀ5
M
solution of [4(H2O)]ClO4 in EtOH–H2O 1 : 1, calculated as
before,13 was 2.28 ꢃ 10ꢀ7 M. Therefore, the reported equili-
brium is able to effectively allow detection of methyl-
mercury[II] by the naked eye in mixed aqueous solutions
through the titration with a thiol compound.
The sensing of Hg2+ by complex 3 worked also when it was
supported on silica (Fig. 5). Thus, a solution of 3 in
EtOH–H2O 1 : 1 (5 mL, 10ꢀ4 M, 5 ꢃ 10ꢀ8 mol) was added
to silica 60 (0.04–0.06 mm, 0.07 g, colourless), stirred for one
minute and the solvent was evaporated to get the yellow
silica (Fig. 5). Then, a solution of Hg2+ (20 mL, 5 ꢃ
10ꢀ3 M, 10ꢀ7 mol) was added and the solvent evaporated to
get the purple-red silica (Fig. 5, left). To test the regeneration
of the silica test probe, a solution of 5 (20 mL, 5 ꢃ 10ꢀ3 M,
10ꢀ7 mol) was added and the solvent evaporated to get again
the yellow silica (Fig. 5, right). By addition of a solution of
Hg2+ (40 mL, 5 ꢃ 10ꢀ3 M, 2 ꢃ 10ꢀ7 mol) and evaporation of
the solvent, purple-red silica, similar to the one depicted in
Fig. 5, left, was obtained. The colour changes after addition of
each reagent were fast and clearly detected, therefore suitable
for practical applications.
Galan-Mascaros, C. Martı-Gastaldo, E. Palomares, J. R. Durrant,
´ ´ ´
R. Vilar, M. Gratzel and M. K. Nazeeruddin, J. Am. Chem. Soc.,
¨
2005, 127, 12351; (e) M. K. Nazeeruddin, D. Di Censo, R.
Humphry-Baker and M. Gratzel, Adv. Funct. Mater., 2006, 16, 189.
¨
5 (a) Y. Che, X. Yang and L. Zang, Chem. Commun., 2008, 1413; (b)
J. Liu and Y. Lu, Angew. Chem., Int. Ed., 2007, 46, 7587; (c) Z. Guo,
W. Zhu, L. Shen and H. Tian, Angew. Chem., Int. Ed., 2007, 46,
5549; (d) M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S.
Wang and D. Zhu, Org. Lett., 2007, 9, 2313; (e) E. M. Nolan and S.
J. Lippard, J. Am. Chem. Soc., 2007, 129, 5910; (f) P. Pallavicini, Y.
A. Diaz-Fernandez, F. Foti, C. Mangano and S. Patroni, Chem.–
Eur. J., 2007, 13, 178; (g) R. R. Avirah, K. Jyothish and D.
Ramaiah, Org. Lett., 2007, 9, 121; (h) J. Wang, X. Qian, J. Qian
and Y. Xu, Chem.–Eur. J., 2007, 13, 7543; (i) M.-H. Ha-Thi, M.
Penhoat, V. Michelet and I. Leray, Org. Lett., 2007, 9, 1133.
6 M. H. Lee, B.-K. Cho, J. Yoon and J. S. Kim, Org. Lett., 2007, 9,
4515.
7 (a) J.-S. Wu, I.-C. Hwang, K. S. Kim and J. S. Kim, Org. Lett.,
2007, 9, 907; (b) X.-J. Zhu, S.-T. Fu, W.-K. Wong, J.-P. Guo and
W.-Y. Wong, Angew. Chem., Int. Ed., 2006, 45, 3150; (c) K. C.
Song, J. S. Kim, S. M. Park, K.-C. Chung, S. Ahn and S.-K.
Chang, Org. Lett., 2006, 8, 3413.
In conclusion, compound 3 worked as a regenerative che-
mical Hg2+ dosimeter by methylation of Hg2+ and formation
of 4 (characterized as the aqua–palladium perchlorate), under-
going a colour change from yellow to purple in 1 : 1
water–ethanol. MeHg+ produced in the titration was further
titrated with dithiol 5, resulting in a reversed colour change
and formation of the original complex 3. The reported equili-
brium was also able to effectively detect MeHg+ by the naked
eye from the colour change associated with the displacement
of the methyl group form MeHg+ by dithiol 5 with subsequent
methylation of the palladium complex 4 in 1 : 1 water–ethanol,
with formation of complex 3. The system is therefore suitable
for the naked-eye detection of Hg2+ and MeHg+, two environ-
mentally important species of mercury[II], in mixed aqueous
solutions and constitutes the first example of a new class of
regenerative chemical dosimeters of Hg2+ with sub-micro-
molar sensitivity.
8 J. V. Ros-Lis, M. D. Marcos, R. Martınez-Manez, K. Rurack and
´ ´
J. Soto, Angew. Chem., Int. Ed., 2005, 44, 4405.
9 (a) H. Strasdeit, Angew. Chem., Int. Ed., 2008, 47, 828; (b) J. G.
Omichinski, Science, 2007, 317, 205; (c) J. G. Melnick and G.
Parkin, Science, 2007, 317, 225; (d) S. M. Miller, Nat. Chem. Biol.,
2007, 3, 537.
10 (a) R. J. Cross and R. Wardle, J. Chem. Soc. A, 1970, 840; (b) J.
´ ´
Fornies, A. Martın, V. Sicilia and P. Villarroya, Organometallics,
2000, 19, 1107.
11 J. R. Dilworth, S. D. Howe, A. J. Hutson, J. R. Miller, J. Silver, R.
M. Thompson, M. Harman and M. B. Hursthouse, J. Chem. Soc.,
Dalton Trans., 1994, 3553.
12 (a) M. J. Green, K. J. Cavell, P. G. Edwards, R. P. Tooze, B. W.
Skeltonc and A. H. White, Dalton Trans., 2004, 3251; (b) K. R.
Reddy, W.-W. Tsai, K. Surekha, G.-H. Lee, S.-M. Peng, J.-T. Chen
and S.-T. Liu, J. Chem. Soc., Dalton Trans., 2002, 1776; (c) H.-B.
Song, Z.-Z. Zhang and T. C. W. Mak, Polyhedron, 2002, 21, 1043.
13 D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De
Jong, P. J. Lewi and J. Smeyers-Verbeke, Handbook of Chemo-
metrics and Qualimetrics: Part A, Eselvier, Amsterdam, The
Netherlands, 1997, ch. 13.
14 J. Vicente and A. Arcas, Coord. Chem. Rev., 2005, 249, 1135.
15 (a) K. Stanley, J. Martin, J. Schnittker, R. Smith and M. C. Baird,
Inorg. Chim. Acta, 1978, 27, L111; (b) A. T. Hutton and F. P.
Wewers, J. Organomet. Chem., 1995, 492, C14.
We gratefully acknowledge financial support from the DGI
of Spain (CTQ2006-15456-C04-04BQU), Junta de Castilla y
Leon, Consejerıa de Educacion y Cultura, y Fondo Social
´ ´ ´
Europeo (BU013A06), European Commission (LIFE05 ENV/
E/000333-Hydrosolar 21), and SCAI-UBU.
ꢁc
This journal is The Royal Society of Chemistry 2008
4578 | Chem. Commun., 2008, 4576–4578