5 (a) Y. L. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145–145;
(b) Y. L. Yu and T. Ikeda, Angew. Chem., Int. Ed., 2006, 45, 5416–
5418.
6 T. Todorov, P. Markovski, N. Tomova, V. Dragostinova and
K. Stoyanova, Opt. Quantum Electron., 1984, 16, 471–476.
7 T. Ikeda and O. Tsutsumi, Science, 1995, 268, 1873–1875.
8 K. Ichimura, S. K. Oh and M. Nakagawa, Science, 2000, 288, 1624–
1626.
9 T. Hugel, N. B. Holland, A. Cattani, L. Moroder, M. Seitz and
H. E. Gaub, Science, 2002, 296, 1103–1106.
10 P. Rochon, E. Batalla and A. Natansohn, Appl. Phys. Lett., 1995, 66,
136–138.
11 (a) D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar, Appl. Phys. Lett.,
1995, 66, 1166–1168; (b) C. Chun, M. Kim, D. Vak and D. Y. Kim,
J. Mater. Chem., 2003, 13, 2904–2909.
12 S. Xie, A. Natansohn and P. Rochon, Chem. Mater., 1993, 5, 403–
411.
to the onset of birefringence. When the excitation light was
turned off (B in Fig. 10), the birefringence value exhibits a little
decay and then reaches a stable state in a few minutes. This result
might be mainly caused by the thermal reorientation of some
azobenzene groups and the interactions of orientated azobenzene
groups on a long-term basis. Compared with other azo-poly-
mers,11b, 32–35 azo-HPAEs show smaller birefringence decay and
possess a remnant birefringence larger than 90% of the initial
value, indicating that these polymers present improved stability
in the case of the photoinduced orientation. This is mainly
attributed to the high glass transition temperatures and rigid
aromatic structure of azo-HPAEs, which limit the relaxation
process of the oriented chromophore groups. At a third stage
in the writing sequence (C in Fig. 10), the optically induced
birefringence is thoroughly ‘‘erased’’ by overwriting the test spot
with circularly polarized Nd:YAG laser beam, suggesting the
randomized orientation of the azobenzene groups. Finally,
when the writing beam was turned on again (A in Fig. 10),
reorientation occurred. Both of the films of 4a and 4b could be
written and erased repeatedly.
13 (a) D. Junge and D. McGrath, Chem. Commun., 1997, 9, 857–858; (b)
D. Junge and D. McGrath, J. Am. Chem. Soc., 1999, 121, 4912–4913.
14 A.
Sidorenko,
C.
Houphouet-Boigny,
O.
Vilavicencio,
M. Hashemzadeh, D. McGrath and V. Tsukruk, Langmuir, 2000,
16, 10569–10572.
15 J. A. Delaire and K. Nakatani, Chem. Rev., 2000, 100, 1817–1845.
16 X. Li, X. M. Lu, Q. H. Lu and D. Y. Yan, Macromolecules, 2007, 40,
3306–3312.
17 R. Alcala, R. Gimenez, L. Oriol and M. Pinol, Chem. Mater., 2007,
19, 235–246.
Although 4b bears fewer azobenzene chromophores than 4a,
the birefringence signal intensity of 4b is five times of that of 4a at
the saturation state. Under the same experiment conditions
outline above, On reaches the saturation values higher than
0.003 for 4a and 0.015 for 4b within several minutes, respectively.
This might be due to the different locations of the substitute azo
moieties in the hyperbranched architectures. The chromophores
in polymer 4a (with azo moieties in the main chains of the
branched arms) are difficult to be oriented compared to those in
4b (with azo moieties in the side chains of the branched arms).
18 (a) T. Nagasaki, S. Tamagaki and K. Ogino, Chem. Lett., 1997, 8,
717–718; (b) S. Yokoyama, T. Nakahama, A. Otomo and
S. Mashiko, J. Am. Chem. Soc., 2000, 122, 3174–3181; (c) T. Aida
and D. Jiang, Nature, 1997, 388, 454–456; (d) S. Yokoyama,
T. Nakahama, A. Otoma and S. Mashiko, Thin Solid Films, 1998,
331, 248–253.
19 (a) Z. Li, A. J. Qin, J. W. Y. Lam, Y. P. Dong, C. Ye, I. D. Williams
and B. Z. Tang, Macromolecules, 2006, 39, 1436–1442; (b) C. Gao and
D. Y. Yan, Prog. Polym. Sci., 2004, 29, 183–275; (c) M. Jikei and
M. Kakimoto, Prog. Polym. Sci., 2001, 26, 1233–1285; (d)
K. Inoue, Prog. Polym. Sci., 2000, 25, 453–571; (e) Z. C. Zhu,
Z. A. Li, Y. Tan, Z. Li, Q. Q. Li, Q. Zeng, C. Ye and J. G. Qin,
Polymer, 2006, 47, 7881–7888.
Conclusions
20 (a) Y. N. He, X. G. Wang and Q. X. Zhou, Synth. Met., 2003, 132,
245–248; (b) P. C. Che, Y. N. He and X. G. Wang,
Macromolecules, 2005, 38, 8657–8663.
Novel hyperbranched azo-poly(aryl ether)s 4a and 4b prepared
by B3 + A2 methodology exhibit high Tg, good thermal stability
and homogeneous photochromic behaviors. They are qualified
for rapid fabrication of thermally stable surface relief gratings.
The polymer with azobenzene moieties in the side chain presents
larger and better reversible photoinduced birefringence than the
one with azobenzene moieties in the main chain upon irradiation
with 532 nm Nd:YAG laser. The hyperbranched azo-polymers
are expected to be promising materials with application poten-
tials in holographic memories, reversible high density optical
storage, optical switch, and other photo-driven devices.
21 (a) N. Zettsu, T. Ubukata, T. Seki and K. Ichimura, Adv. Mater.,
2001, 13, 1693–1697; (b) H. Nakano, T. Tanino, T. Takahashi,
H. Ando and Y. Shirota, J. Mater. Chem., 2008, 18, 242–246.
22 (a) H. B. Zhang, J. H. Pang and Z. H. Jiang, J. Membr. Sci., 2005, 264,
56–64; (b) Y. Gao, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko
and S. Kaliaguine, Macromolecules, 2005, 38, 3237–3245; (c)
X. Y. Ma, Z. H. Lv, D, Wang and Z. H. Jiang, J. Photochem.
Photobiol., A, 2007, 188, 43–50.
23 G. X. Jiang, B. Yao and L. X. Wang, Macromolecules, 2006, 39, 1403–
1409.
24 (a) Z. Q. Lu, P. Shao and J. G. Qin, Macromolecules, 2004, 37, 7089–
7096; (b) X. B. Chen, J. J. Zhang and Z. H. Jiang, Dye and Pigments,
2008, 77, 223–228.
25 J. J. Hao, M. Jikei and M. A. Kakimoto, Macromolecules, 2003, 36,
3519–3528.
´
26 T. Emrick, H. Chang and J. Frechet, Macromolecules, 1999, 32, 6380–
6382.
27 M. G. McKee, T. Park, S. Unal and T. E. Long, Polymer, 2005, 46,
2011–2015.
28 T. Fukuda, H. Matsuda, T. Shiraga, T. Kimura, M. Kato,
N. K. Viswanathan, J. Kumar and S. K. Tripathy, Macromolecules,
2000, 33, 4220–4225.
References
1 (a) Z. Z. Stephan and H. Dietrich, Adv. Mater., 1998, 10, 855–859; (b)
A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139–4175; (c)
A. S. Matharu, S. Jeeva, P. R. Huddleston and P. S. Ramanujam,
J. Mater. Chem., 2007, 17, 4477–4482; (d) Y. B Li, Y. N. He,
X. L. Tong and X. G. Wang, J. Am. Chem. Soc., 2005, 127, 2402–
2403.
29 J. Gao, Y. N. He, H. P. Xu, B. Song, X. Zhang, Z. Q. Wang and
X. G. Wang, Chem. Mater., 2007, 19, 14–17.
30 S. P. Bian and S. K. Tripathy, Adv. Mater., 2000, 12, 1202–1205.
31 T. Todorov, L. Nikalava and N. Tomova, Appl. Opt., 1984, 23, 4309–
4312.
2 (a) S. W. Cha, D. H. Choi and J. I. Jin, Adv. Funct. Mater., 2002, 12,
670–678; (b) E. Ishow, B. Lebon, Y. N. He, X. G. Wang, L. Bouteiller,
L. Galmiche and K. Nakatani, Chem. Mater., 2006, 18, 1261–1267.
3 L. L. Beth, A. M. Stefan and A. A. Hanrry, Adv. Mater., 2004, 16,
1746–1750.
32 R. Fernandez, I. Mondragon, P. A. Oyanguren and M. J. Galante,
React. Funct. Polym., 2008, 68, 70–76.
33 Y. Wu and A. Natansohn, Macromolecules, 2001, 34, 7822–7828.
34 A. Natansohn and A. Hay, Chem. Mater., 1995, 7, 1612–1615.
35 S. W. Cha and D. H. Choi, Adv. Funct. Mater., 2001, 11, 355–360.
4 (a) H. Rainer and B. Thomas, Adv. Mater., 2001, 13, 1805–1810; (b)
Z. A. Li, Z. Li, C. A. Di, Z. C. Zhu, Q. Q. Li, Q. Zeng, K. Zhang,
Y. Q. Liu, C. Ye and J. G. Qin, Macromolecules, 2006, 39,
6951–6961; (c) Q. Zeng, Z. A. Li, Z. Li, C. Ye, J. G. Qin and
B. Z. Tang, Macromolecules, 2007, 40, 5634–5637.
5026 | J. Mater. Chem., 2008, 18, 5019–5026
This journal is ª The Royal Society of Chemistry 2008