1817
D. Orain et al.
Letter
Synlett
References and Notes
MeOOC
b)
MeOOC
MeOOC
OH
OH
MeOOC
a)
+
c)
(1) Carter, R. G.; Kuiper, D. L. Asymmetric Synthesis of Spiroketals,
Bisspiroketals, and Spiroaminals, In Stereoselective Synthesis 2:
Stereoselective Reactions of Carbonyl and Imino Groups; Vol. 2;
Molander, G. A., Ed.; Thieme: Stuttgart, 2011, 863–914.
(2) Coe, J. W.; Brooks, P. R.; Vetelino, M. G.; Wirtz, M. C.; Arnold, E.
P.; Huang, J.; Sands, S. B.; Davis, T. B.; Lebel, L. A.; Fox, C. B.;
Shrikhande, A.; Heym, J. H.; Schaeffer, E.; Rolemma, H.; Lu, Y.;
Mansbach, R. S.; Chambers, C. K.; Rovetti, C. C.; Schultz, D. W.;
Tingley, D.; O’Neill, B. T. J. Med. Chem. 2005, 48, 3474.
(3) Bemis, G. W.; Murcko, M. A. J. Med. Chem. 1996, 39, 2887.
(4) Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.;
Maerki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.;
Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W. B.; Mueller, K.;
Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 4512.
N
N
N
MeO
Si
N
16
15
Bn
14
Bn
Bn
Bn
OTs
O
OTs
e)
S
d)
NH
f)
N
O
NO2
N
N
Bn
Bn
17
18
19
N
Bn
N
Boc
g)
N
(5) Orr, S. T. M.; Cabral, S.; Fernando, D. P.; Makowski, T. Tetrahe-
dron Lett. 2011, 52, 3618.
Bn
20
(6) Sippy, K. B.; Anderson, D. J.; Bunnelle, W. H.; Hutchins, C. W.;
Schrimpf, M. R. Bioorg. Med. Chem. Lett. 2009, 19, 1682.
(7) Grygorenko, O. O.; Radchenko, D. S.; Volochnyuk, D. M.;
Tolmachev, A. A.; Komarov, I. V. Chem. Rev. 2011, 111, 5506.
(8) McClure, K. F.; Jackson, M.; Cameron, K. O.; Kung, D. W.; Perry,
D. A.; Orr, S. T. M.; Zhang, Y.; Kohrt, J.; Tu, M.; Gao, H.; Fernando,
D.; Jones, R.; Erasga, N.; Wang, G.; Polivkova, J.; Jiao, W.; Swartz,
R.; Ueno, H.; Bhattacharya, S. K.; Stock, I. A.; Varma, S.;
Bagdasarian, V.; Perez, S.; Kelly-Sullivan, D.; Wang, R.; Kong, J.;
Cornelius, P.; Michael, L.; Lee, E.; Janssen, A.; Steyn, S. J.;
Lapham, K.; Goosen, T. Bioorg. Med. Chem. Lett. 2013, 23, 5410.
(9) Engel, W.; Eberlein, W.; Trummlitz, G.; Mihm, G.; Doods, H.;
Mayer, N.; de Jonge, A. EP 417631, 1991.
(10) The benzoyl group was chosen as protecting group for the
nitrogen since protection with benzyl chloride or bromide pro-
ceeded with lower yield (69%).
(11) Holl, R.; Jung, B.; Schepmann, D.; Humpf, H.-U.; Gruenert, R.;
Bednarski, P. J.; Englberger, W.; Wuensch, B. ChemMedChem
2009, 4, 2111.
Scheme 4 Reagents and conditions: a) cat. TFA, CH2Cl2, 0 °C to r.t.
(90%); b) LDA, ClCOOMe, THF –78 °C to 0 °C (84%); c) LiAlH4, THF, 0 °C
to reflux (91%); d) TosCl, Et3N–DMAP, CH2Cl2, r.t. (54%); e) 2-nitroben-
zenesulfonamide, K2CO3, DMF, 100 °C (95%); f) PhSH, Cs2CO3, MeCN,
r.t.; g) Boc2O, Et3N, CH2Cl2, r.t. (60% over two steps).
mation of the nosyl-protected azetidine 18 was high yield-
ing (95%)17 and subsequent thiophenol-mediated nosyl
group removal led to the spirocyclic amine 19 which was
Boc-protected giving intermediate 20 in 60% yield over two
steps.18
The
orthogonally
protected
2,6-di-
azaspiro[3.5]nonane and 2,6-diazaspiro[3.4]octane build-
ing blocks are ideally set up for further functionalizations.
The Boc group can be cleaved either with TFA or HCl in di-
oxane allowing functionalization of the azetidine nitrogen.
Then, the benzyl protecting group can be hydrogenolytical-
ly cleaved to functionalize the piperidine nitrogen. Alterna-
tively, the order of functionalizations can be interconverted.
In summary, we have reported for the first time the syn-
thesis of the spirocyclic amines 2,6-diazaspiro[3.5]nonane
derivative and 2,6-diazaspiro[3.4]octane which are accessi-
ble in an excellent overall yield of 53% and 26% over six
steps, respectively. The syntheses were optimized on gram
scale and are amenable for further scale-up to multigram
scale.
(12) Fyfe, M. C. T.; Gattrell, W.; Rasamison, C. M. WO 116230, 2007.
(13) Shiozaki, M.; Ishida, N.; Hiraoka, T.; Maruyama, H. Tetrahedron
1984, 40, 1795.
(14) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36,
6373.
(15) Typical Procedure for Nosyl Group Removal
Cs2CO3 (22.64 g, 0.069 mol) and thiophenol (5.21 mL, 0.051
mol) were successively added to a solution of nosyl-protected
spiro amine 10 (18.6 g, 0.046 mol) in MeCN (150 mL). The
mixture was stirred at r.t. for 16 h. After this time the starting
material was consumed as judged by TLC. The reaction mixture
was filtered through a short layer of Celite. The cake was
washed first with EtOAc (300 mL) and further with CH2Cl2–
MeOH–NH3 (7 M in MeOH, 80:18:2, 3 × 100 mL), and the col-
lected organic layer was concentrated to give in total 31.3 g of
the crude oil, which was absorbed on the minimum of silica gel
and poured into a chromatography column containing a 1 cm
layer of silica gel. The elution was carried out with EtOAc to
wash off unpolar impurities and then with the system CH2Cl2–
MeOH–NH3 (7 M in MeOH, 80:18:2) to give the product 11 (8.8
g, 89% yield) as yellow oil. LCMS (214 nm): tR = 7.8 min (89.1%
content), [M + H]+ = 217.0. TLC analysis: Rf = 0.07 in CH2Cl2–
MeOH–NH3 (7 M in MeOH). 1H NMR (400 MHz, CD3OD): δ =
7.36–7.19 (m, 5 H), 3.51 (s, 2 H), 3.38–3.33 (m, 4 H), 2.53–2.28
Acknowledgment
The authors would like to thank Piotr Graczyk and Przemyslaw
Zawadzki for helpful discussions.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 1815–1818