ACS Catalysis
Meuresch, M.; Westhues, S.; Leitner, W.; Klankermayer, J.,
Page 8 of 11
Z.; Xia, Y., Use of Reduction Rate as Quantitative Knob for
Controlling the Twin Structure and Shape of Pd Nanocrystals.
Nano Lett. 2015, 15, 1445-1450; (c) Yin, Y.; Alivisatos, A. P.,
Colloidal Nanocrystal Synthesis and the Organic–Inorganic
Interface. Nature 2005, 437, 664-670.
1
2
3
4
5
6
7
8
Tailor-Made Ruthenium-Triphos Catalysts for the Selective
Homogeneous Hydrogenation of Lactams. Angew. Chem. Int.
Ed. 2016, 55, 1392-1395; (f) Jayarathne, U.; Zhang, Y.;
Hazari, N.; Bernskoetter, W. H., Selective Iron-Catalyzed
Deaminative Hydrogenation of Amides. Organometallics
2017, 36, 409-416.
14.
(a) Würtz, S.; Glorius, F., Surveying Sterically
Demanding N-Heterocyclic Carbene Ligands with Restricted
Flexibility for Palladium-Catalyzed Cross-Coupling
Reactions. Acc. Chem. Res. 2008, 41, 1523-1533; (b)
Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F., An
Overview of N-Heterocyclic Carbenes. Nature 2014, 510,
485-496; (c) Silvia, D.-G.; Marion, N.; Nolan, S. P., N-
Heterocyclic Carbenes in Late Transition Metal Catalysis.
Chem. Rev. 2009, 109, 3612-3676.
6.
(a) Werkmeister, S.; Junge, K.; Beller, M., Catalytic
Hydrogenation of Carboxylic Acid Esters, Amides, and
Nitriles with Homogeneous Catalysts. Org. Proc. Res. Dev.
2014, 18, 289-302; (b) Balaraman, E.; Milstein, D.,
Hydrogenation of Polar Bonds Catalyzed by Ruthenium-
Pincer Complexes. Top. Organomet. Chem. 2014, 48, 19-43;
(c) Korstanje, T. J.; van der Vlugt, J. I.; Elsevier, C. J.; de
Bruin, B., Hydrogenation of Carboxylic Acids with a
Homogeneous Cobalt Catalyst. Science 2015, 350, 298-302.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
15.
J. A., Carbene Ligands in Surface Chemistry: From
(a) Zhukhovitskiy, A. V.; MacLeod, M. J.; Johnson,
7.
(a) Zuo, W.; Lough, A. J.; Feng, Y.; Morris, R. H.,
Stabilization of Discrete Elemental Allotropes to Modification
of Nanoscale and Bulk Substrates. Chem. Rev. 2015, 115,
11503-11532; (b) Luska, K. L.; Moores, A., Functionalized
Ionic Liquids for the Synthesis of Metal Nanoparticles and
Their Application in Catalysis. ChemCatChem 2012, 4, 1534-
1546; (c) Zhong, R.; Lindhorst, A. C.; Groche, F. J.; Kühn, F.
E., Immobilization of N-Heterocyclic Carbene Compounds: A
Synthetic Perspective. Chem. Rev. 2017, 117, 1970-2058.
Amine(Imine)Diphosphine Iron Catalysts for Asymmetric
Transfer Hydrogenation of Ketones and Imines. Science 2013,
342, 1080-1083; (b) Foubelo, F.; Yus, M., Catalytic
Asymmetric Transfer Hydrogenation of Imines: Recent
Advances. Chem. Rec. 2015, 15, 907-924.
8.
(a) Bagal, D. B.; Bhanage, B. M., Recent Advances
in Transition Metal-Catalyzed Hydrogenation of Nitriles. Adv.
Synth. Cat. 2015, 357, 883-900; (b) Bornschein, C.;
Werkmeister, S.; Wendt, B.; Jiao, H.; Alberico, E.; Baumann,
W.; Junge, H.; Junge, K.; Beller, M., Mild and Selective
Hydrogenation of Aromatic and Aliphatic (Di)Nitriles with a
Well-Defined Iron Pincer Complex. Nat. Comm. 2014, 5,
4111-4122; (c) Mukherjee, A.; Srimani, D.; Chakraborty, S.;
Ben-David, Y.; Milstein, D., Selective Hydrogenation of
Nitriles to Primary Amines Catalyzed by a Cobalt Pincer
Complex. J. Am. Chem. Soc. 2015, 137, 8888-8891; (d)
Reguillo, R.; Grellier, M.; Vauravers, N.; Vendier, L.; Sabo-
Etienne, S., Ruthenium-Catalyzed Hydrogenation of Nitriles:
Insights into the Mechanism. J. Am. Chem. Soc. 2010, 132,
7854-7855.
16. (a) Dupont, J.; Fonseca, G. S.; Umpierre, A. P.;
Fichtner, P. F. P.; Texeira, S. R., Transition-Metal
Nanoparticles in Imidazolium Ionic Liquids: Recyclable
Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem.
Soc. 2002, 124, 4228-4229; (b) Scheeren, C. W.; Machado,
G.; Dupont, J.; Fichtner, P. F. P.; Texeira, S. R., Nanoscale
Pt(0) Particles Prepared in Imidazolium Room Temperature
Ionic Liquids: Synthesis from an Organometallic Precursor,
Characterization, and Catalytic Properties in Hydrogenation
Reactions. Inorg. Chem. 2003, 42, 4738-4742; (c) Migowski,
P.; Dupont, J., Catalytic Applications of Metal Nanoparticles
in Imidazolium Ionic Liquids. Chem. Eur. J. 2007, 13, 32-39.
17.
(a) Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K.
9.
(a) Jagadeesh, R. V.; Surkus, A.-E.; Junge, H.; Pohl,
R.; Finke, R. G., Nanoclusters in Ionic Liquids: Evidence for
N-Heterocyclic Carbene Formation from Imidazolium-Based
Ionic Liquids Detected by ²H NMR. J. Am. Chem. Soc. 2005,
127, 5758-5759; (b) Ott, L. S.; Campell, S.; Seddon, K. R.;
Finke, R. G., Evidence That Imidazolium-Based Ionic Ligands
Can Be Metal(0)/Nanocluster Catalyst Poisons in at Least the
Test Case of Iridium(0)-Catalyzed Acetone Hydrogenation.
Inorg. Chem. 2007, 46, 10335-10344.
M.-M.; Radnik, J.; Rabeah, J.; Huan, H.; Schunemann, V.;
Bruckner, A.; Beller, M., Nanoscale Fe₂O₃-Based Catalysts
for Selective Hydrogenation of Nitroarenes to Anilines.
Science 2013, 342, 1073-1076; (b) Tafesh, A. M.; Weiguny,
J., Selective Catalytic Reduction of Aromatic Nitro
Compounds into Aromatic Amines, Isocyates, Carbamates,
and Ureas. Chem. Rev. 1996, 96, 2035-2052.
10.
of Direct Hydrogenation by Catalysis
<Http://Www.Nobelprize.Org/Nobel_Prizes/Chemistry/Laurea
tes/1912/Sabatier-Lecture.Html>.
11.
Chemistry, 5th Ed. Wiley-VCH: Weinheim, 2010.
12. (a) Augustine, R. L., Heterogeneous Catalysis for the
Synthetic Chemist. Marcel Dekker, Inc.: New York, NY, 1996;
(b) Widegren, J. A.; Finke, R. G., A Review of the Problem of
Distinguishing True Homogeneous Catalysis from Soluble or
Other Metal-Particle Heterogeneous Catalysis under Reducing
Conditions. J. Mol. Cat. A 2003, 198, 317-341; (c) Dyson, P.
J., Arene Hydrogenation by Homogeneous Catalysts: Fact or
Fiction? Dalton Trans. 2003, 2964-2974.
18.
(a) Lara, P.; Rivada-Wheelaghan, O.; Conejero, S.;
Poteau, R.; Philippot, K.; Chaudret, B., Ruthenium
Sabatier, P. 1912 Nobel Prize Lecture: The Method
Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand
Location and Influence on Reactivity. Angew. Chem. Int. Ed.
2011, 50, 12080-12084; (b) Gonzalez-Galvez, D.; Lara, P.;
Rivada-Wheelaghan, O.; Conejero, S.; Chaudret, B.; Philippot,
K.; Leeuwen, P. W. N. M. v., NHC-Stabilized Ruthenium
Nanoparticles as New Catalysts for the Hydrogenation of
Aromatics. Catal. Sci. Technol. 2013, 3, 99-105; (c) Lara, P.;
Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B., Platinum
N-Heterocyclic Carbene Nanoparticles as New and Effective
Catalysts for the Selective Hydrogenation of Nitroaromatics.
ChemCatChem 2014, 6, 87-90; (d) Hurst, E. C.; Wilson, K.;
Fairlamb, I. J. S.; Chechik, V., N-Heterocyclic Carbene
Coated Metal Nanoparticles. New J. Chem. 2009, 33, 1837-
1840; (e) Richter, C.; Schaepe, K.; Glorius, F.; Ravoo, B. J.,
Tailor-Made N-Heterocyclic Carbenes for Nanoparticle
Stabilization. Chem. Comm. 2014, 50, 3204-3207; (f)
Arpe, H.-J.; Hawkins, S., Industrial Organic
13.
(a) Yang, T.-H.; Gilroy, K. D.; Xia, Y., Reduction
Rate as a Quantitiatve Knob for Achieving Determinstic
Synthesis of Colloidal Metal Nanocrystals. Chem. Sci. 2017,
8, 6730-6749; (b) Wang, Y.; Peng, H.-C.; Liu, J.; Huang, C.
8
ACS Paragon Plus Environment