S. Narayanan et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1133–1136
1135
Scheme 2.
Compounds 13 and 14 were smoothly deprotected by
reaction with 6 N HCl at reflux temperature to provide
dihydrochloride salts of 2,3-dialkyl-l-histidines (15)14,15
and 2,3-dialkylhistamines (16).16 In the case of 2,3-di-
alkylhistidines the free amino acids were obtained by
ion-exchange chromatography (Dowex, 50ꢂ2-200, H+
form) after eluting the column with 15% NH4OH,
whereas the histamine derivatives were directly obtained
by evaporation after acid hydrolysis.
G.; Cohen, L. A.; Labroo, V. M. Eur. J. Pharmacol. 1989, 164,
77.
4. (a) Goot, H.; Timmerman, H. Eur. J. Med. Chem. 2000, 35,
5. (b) Scozzafava, A.; Supuran, C. T. Eur. J. Med. Chem.
2000, 35, 31. (c) Elz, S.; Kramer, K.; Leschke, C.; Schunack,
W. Eur. J. Med. Chem. 2000, 35, 41. (d) Elz, S.; Kramer, K.;
Pertz, H. H.; Detert, H.; Laak, A. M.; Kuhne, R.; Schunack,
¨
W. J. Med. Chem. 2000, 43, 1071.
5. Jain, R.; Cohen, L. A. Tetrahedron 1996, 52, 5363.
6. Jain, R.; Cohen, L. A.; El-Kadi, N. A.; King, M. M. Tet-
rahedron 1997, 53, 2365.
7. Jain, R.; Cohen, L. A.; King, M. M. Tetrahedron 1997, 53,
4539.
8. Jain, R.; Avramovitch, B.; Cohen, L. A. Tetrahedron 1998,
54, 3235.
Typical procedure for homolytic radical alkylation
A freshly prepared solution of ammonium persulfate
(3 mmol) in water (10 mL) was added dropwise to a pre-
heated (70 ꢀC) mixture of 11 or 12 (1mmol), silver
nitrate (0.6 mmol) and alkylcarboxylic acid (2.5 mmol)
in 10% H2SO4 (20 mL) during 10 min. The heating
source was then removed and reaction proceeded with
evolution of carbon dioxide. After 10 min, the reaction
mixture was poured onto ice, and the resulting mixture
was made alkaline with addition of 30% NH4OH. This
was extracted with ethyl acetate (4ꢂ50 mL), and the
combined extracts were washed with NaCl solution
(2ꢂ10 mL), dried over Na2SO4, and the solvent
removed in vacuo to afford oil, which on flash column
chromatography [EtOAc/CH3OH, 95:5] over silica gel
(230–400 mesh) gave 13 or 14 (Table 1).
9. (a) For mechanistic aspects of the homolytic radical reac-
tion, please see: Minisci, F.; Bernardi, R.; Bertini, F.; Galli,
R.; Perchinummo, M. Tetrahedron 1971, 27, 3575. (b) Minisci,
F.; Visamara, E.; Fontana, F.; Morini, G.; Serravalle, M.;
Giordano, C. J. Org. Chem. 1987, 52, 730. (c) Giordano, C.;
Minisci, F.; Visamara, E.; Levi, S. J. Org. Chem. 1986, 51, 536.
(d) Visamara, E.; Serravalle, M.; Minisci, F. Tetrahedron Lett.
1986, 27, 3187. (e) Anderson, J. M.; Kochi, J. K. J. Am. Chem.
Soc. 1970, 92, 1651. (f) Minisci, F. Synthesis 1973, 1. (g) Minisci,
F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
10. Chivikas, C. J.; Hodges, J. C. J. Org. Chem. 1987, 52,
3591.
11. Gonzalez, F. B.; Baz, J. P.; Santinelli, F.; Real, F. M. Bull.
Chem. Soc. Jpn. 1991, 64, 674.
12. Spectral data for N-carbomethoxy-2-tert-butyl-3-benzyl-
l-histidine methyl ester (13f): mp 97–99 ꢀC; IR (KBr), 3418,
2955, 1715, 1562, 1263; 1H NMR (CDCl3) d 1.36 (s, 9H,
3ꢂCH3), 2.78 (t, 2H, CH2, J=5.9 Hz), 3.64 (s, 3H, OCH3),
3.69 (s, 3H, OCH3), 4.48 (m, 1H, CH), 5.24 (bs, 1H, NH), 6.78
(s, 1H, 5-Ar-H), 6.86 (m, 2H, Ar-H), 7.29 (m, 3H, Ar-H); ana-
lysis for C20H27N3O4 (373.5), calcd C, 64.32; H, 7.29; N, 11.25;
found C, 64.32; H, 7.25; N, 11.33; HRMS m/z 374 (M+1).
13. Spectral data for N-carbomethoxy-2-cyclohexyl-3-benzyl-
histamine (14d): mp 86–88 ꢀC; IR (KBr), 3443, 2932, 2854,
The results summarized now establish the first direct
regiospecific synthesis of previously inaccessible 2,3-di-
substituted-l-histidines and 2,3-disubstituted hista-
mines. The key to the synthesis is the free radical
alkylation of the protonated 3-substituted bioimidazoles
via silver catalyzed oxidative decarboxylation of acids
with peroxydisulfate.
1
1711, 1217, 756; H NMR (CDCl3) d 1.24 (m, 4H, 2ꢂCH2),
1.73 (m, 6H, 3ꢂCH2), 2.52 (m, 2H, CH), 2.58 (m, 2H, CH2),
3.62 (s, 3H, OCH3), 5.80 (bs, 1H, NH), 5.08 (s, 2H, CH2), 6.82
(s, 1H, 5-Ar-H), 6.88 (m, 2H, Ar-H), 7.30 (m, 3H, Ar-H); ana-
lysis for C20H27N3O2 (341.5), calcd C, 70.35; H, 7.97; N, 12.31;
found C, 70.22; H, 7.65; N, 12.37; MS (EI) m/z 341(M +).
14. Spectral data for 2-tert-butyl-3-benzyl-l-histidine (15f):
mp 217–219 ꢀC (dec.); IR (KBr), 3387, 2981, 1738, 1409, 736;
References and Notes
1. (a) Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.;
Morgan, B.; Coy, D. H. J. Med. Chem. 1998, 41, 1146. (b)
Hocart, S. J.; Jain, R.; Murphy, W. A.; Taylor, J. E.; Coy,
D. H. J. Med. Chem. 1999, 42, 1863.
2. (a) Timmermans, P. B. M. W. M.; Smith, R. D. In Burger’s
Medicinal Chemistry and DrugDiscovery: Therapeutic Agents ,
5th ed.; Wolff, M. F., Eds.; Wiley-Interscience: New York,
1996; Vol. 2, pp 265–321. (b) Perlman, J. H.; Colson, A.-O.;
Jain, R.; Czyzewski, B.; Cohen, L. A.; Osman, R.; Ger-
shengorn, M. C. Biochemistry 1997, 36, 15670.
1H NMR (D2O) d 0.79 (m, 9H, 3ꢂCH3), 2.41(m, 2H, CH ),
2
3.28 (m, 1H, CH), 4.98 (s, 2H, CH2), 6.38 (d, 2H, Ar-H), 6.72
(m, 2H, Ar-H), 6.78 (s, 1H, 5-Ar-H); analysis for C17H23N3O2
(301.4), calcd C, 67.75; H, 7.69; N, 13.94; found C, 67.80; H,
7.55; N, 13.50; HRMS m/z 302 (M+1); [a]2D5 ꢁ11.2ꢀ (c=1,
CH3OH). TLC system A (nBuOH/AcOH/H2O, 2:1:1), Rf=0.6
(one spot); TLC system
2:1:1:1), Rf=0.55 (one spot).
B (EtOAc/nBuOH/AcOH/H2O,
3. (a) Faden, A. I.; Labroo, V. M.; Cohen, L. A. J. Neuro-
trauma 1993, 10, 101. (b) Vanhof, S.; Paakkari, I.; Feuerstein,
15. The optical purity of modified histidine analogues were
assessed on HPLC using CHIRALPAK WH chiral column