Communication
ChemComm
M. Toyonari, T. Sueda, S. Goto and M. Shiro, J. Am. Chem. Soc.,
1996, 118, 7716.
enediones in the oxidation of isochroman (18) and indane (21)
(Table 2, entries 9 and 10). Oxidation of N-tosyltetrahydro-
isoquinoline (24) afforded small amounts of desired amide pro-
duct 26, and due to the decomposition of the peroxide being very
slow in this case peroxide compound 25 was the major product
(Table 2, entry 11). Though we did not detect a peroxide inter-
mediate in the a-1 oxidation reaction, based on the above results
from benzylic oxidation, we concluded that it is likely that t-BuOOꢀ
(t-butylperoxy radical) still forms and acts as an oxidant in this
reaction system. The successful tracing of the tert-butylperoxy
radical revealed that the Rh2(esp)2 catalyzed green process is a
radical reaction. According to the allylic and benzylic oxidation
mechanism in dirhodium(II) chemistry outlined by Doyle and
co-workers,6f–j the most probable pathway was believed to be as
follows: after T-HYDRO was added to the reaction mixture, the
one-electron oxidation of Rh2(esp)2 to Rh2(esp)2+ occurred. Due to
the high oxidation potential of the Rh2(esp)2 (E1/2 = 1130 mV), this
oxidation is also a rate-limiting step and the very reactive
6 (a) J. Muzart, Chem. Rev., 1992, 92, 113; (b) T. K. M. Shing, Y.-Y.
Yeung and P. L. Su, Org. Lett., 2006, 8, 3149; (c) J. Q. Yu and
E. J. Corey, Org. Lett., 2002, 4, 2727; (d) J. Q. Yu and E. J. Corey,
J. Am. Chem. Soc., 2003, 125, 3232; (e) J. Q. Yu and E. J. Corey, Org.
Lett., 2005, 7, 1415; ( f ) A. J. Catino, R. E. Forslund and M. P. Doyle,
J. Am. Chem. Soc., 2004, 126, 13622; (g) M. O. Ratnikov and
M. P. Doyle, Mendeleev Commun., 2014, 24, 1; (h) A. J. Catino,
J. M. Nichols, H. Choi, S. Gottipamula and M. P. Doyle, Org. Lett.,
2005, 7, 5167; (i) E. C. McLaughlin, H. Choi, K. Wang, G. Chiou and
M. P. Doyle, J. Org. Chem., 2009, 74, 730; ( j) E. C. McLaughlin and
M. P. Doyle, J. Org. Chem., 2008, 73, 4317; (k) A. Wusiman, X. Tusun
and C. D. Lu, Eur. J. Org. Chem., 2012, 3088; (l) M. Jurado-Gonzalez,
A. C. Sullivan and J. R. H. Wilson, Tetrahedron Lett., 2003, 44, 4283;
(m) E. Modica, G. Bombieri, D. Colombo, N. Marchini, F. Ronchetti,
A. Scala and L. Toma, Eur. J. Org. Chem., 2003, 2964; (n) M. Nakanishi
and C. Bolm, Adv. Synth. Catal., 2007, 349, 861; (o) T. Nagano and
S. Kobayashi, Chem. Lett., 2008, 37, 1042; (p) J. A. R. Salvador,
M. L. S. Melo and A. S. C. Neves, Tetrahedron Lett., 1997, 38, 119;
(q) Y. C. Li, T. B. Lee, T. Y. Wang, A. V. Gamble and A. E. V. Gorden,
J. Org. Chem., 2012, 77, 4628.
7 (a) A. Nakamura and M. Nakada, Synthesis, 2013, 1421; (b) A recent
example that the allylic oxidation of an alkene as key step lied in the
synthesis of complex molecules, see: Y.-L. Zhong, D. R. Gauthier,
Y.-J. Shi, M. McLaughlin, J. Y. L. Chung, P. Dagneau and N. Yasuda,
J. Org. Chem., 2012, 77, 3297.
8 (a) S. J. Na, B. Y. Lee, N. N. Bui, S. I. Mho and H. Y. Jang,
J. Organomet. Chem., 2007, 692, 5523; (b) N. N. Bui, J. T. Hong,
X. H. Ho, S. I. Mho and H. Y. Jang, Bull. Korean Chem. Soc., 2008,
29, 1624; (c) J. A. S. Coelho, A. F. Trindade, R. Wanke, B. G. M.
Rocha, L. F. Veiros, P. M. P. Gois, A. J. L. Pombeiro and C. A. M.
Afonso, Eur. J. Org. Chem., 2013, 1471.
+
Rh2(esp)2 species would generate in this step. This activated
species then underwent a much faster chemical transformation
with the substrate to the desired product. This would explain why
the Rh2(esp)2 is the catalyst resting state during the reaction.20
Futhermore, because of the low conversion of the reaction cata-
lyzed by Rh2(OAc)4, the details of how the chelating ligand of
Rh2(esp)2 affects the catalyst remains to be investigated.
9 H. Ernst, Pure Appl. Chem., 2002, 74, 2213.
In summary, we have reported the low loading chelating
dirhodium(II) complex Rh2(esp)2 catalyzing allylic and benzylic
oxidations with good conversion under operationally simple,
solvent-free, mild reaction conditions, a report which has
potential applications in both the fine chemical and pharma-
ceutical industries. These reactions generally exhibit high
catalyst stability because they have a dirhodium(II,II) catalyst
resting state, which is less prone to decomposition. Further
experiments will be used to elucidate the mechanism in detail
and to broaden the scope of the reaction.
10 (a) C. Beck, T. Mallat and A. Baiker, J. Catal., 2000, 195, 79; (b) E. F.
Murphy and A. Baiker, J. Mol. Catal. A: Chem., 2002, 179, 233;
(c) E. F. Murphy, M. Schneider, T. Mallat and A. Baiker, Synthesis,
2001, 547; (d) T. Joseph, S. B. Halligudi, C. Satyanarayan, D. P.
Sawant and S. Gopinathan, J. Mol. Catal. A: Chem., 2001, 168, 87;
(e) E. F. Murphy, T. Mallat, A. Baiker and M. Schneider, Appl. Catal.,
A, 2000, 197, 295; ( f ) A. Hanyu, Y. Sakurai, S. Fujibayashi,
S. Sakaguchi and Y. Ishii, Tetrahedron Lett., 1997, 38, 5659;
(g) D. Kishore and A. E. Rodrigues, Catal. Commun., 2007, 8, 1156;
(h) D. Kishore and A. E. Rodrigues, Appl. Catal., A, 2008, 345, 104;
(i) C. Wang, G. Wang, J. Mao, Z. Yao and H. Li, Catal. Commun.,
2010, 11, 758.
11 (a) J. J. Becker, U. P. Hochstrasser and W. Skorianetz, US Pat.,
3944620, 1976; (b) J. J. Becker, W. Skorianetz and P. Ulrich,
DE2459148, 1974; (c) P. P. Paul, Prog. Inorg. Chem., 1999, 48, 457.
12 (a) C. G. Espino, K. W. Fiori, M. Kim and J. Du Bois, J. Am. Chem.
Soc., 2004, 126, 15378; (b) H. M. L. Davies and J. R. Manning, Nature,
2008, 451, 417; (c) D. N. Zalatan and J. Du Bois, Top. Curr. Chem.,
2010, 292, 347; (d) D. N. Zalatan and J. Du Bois, J. Am. Chem. Soc.,
2009, 131, 7558; (e) K. P. Kornecki and J. F. Berry, Chem. – Eur. J.,
2011, 17, 5827.
We are grateful for financial support from National Science
Foundation of China (Grant No. 21272162).
Notes and references
1 (a) C–H Activation, ed. J.-Q. Yu and Z. Shi, Topics in Current Chemistry,
Springer-Verlag, Berlin, 2010, vol. 292; (b) Handbook of C–H Transforma-
tions: Applications in Organic Synthesis, ed. G. Dyker, Wiley-VCH, Wein- 13 T. P. Zhu, M. Q. Ahsan, T. Malinski, K. M. Kadish and J. L. Bear,
heim, 2005; (c) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215; Inorg. Chem., 1984, 23, 2.
(d) R. H. Crabtree, Chem. Rev., 2010, 110, 575; (e) J. F. Hartwig, Nature, 14 (a) J. Bickley, R. Bonar-Law, T. McGrath, N. Singh and A. Steiner,
2008, 455, 314; ( f ) K. Godula and D. Sammes, Science, 2006, 312, 67;
(g) J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507.
New J. Chem., 2004, 28, 425; (b) D. F. Taber, R. P. Meagley, J. P. Louey
and A. L. Rheingold, Inorg. Chim. Acta, 1995, 239, 25.
2 (a) R. A. Sheldon and J. K. Kochi, Metal-Catalyzed Oxidation of Organic 15 (a) M. P. Doyle, M. A. McKervey and T. Ye, Modem Catalytic Methods
Compounds, Academic Press, New York, 1981; (b) T. Newhouse and
P. S. Baran, Angew. Chem., 2011, 123, 3422.
3 Modern Oxidation Methods, ed. J.-E. Backvall, Wiley-VCH, Weinheim,
2010.
for Organic Synthesis with Diazo Compounds, John Wiley and Sons,
New York, 1998; (b) K. P. Kornecki, J. F. Berry, D. C. Powers and
T. Ritter, Prog. Inorg. Chem., 2014, 58, 225.
16 L. Villalobos, J. E. Barker Paredes, Z. Cao and T. Ren, Inorg. Chem.,
2013, 52, 12545.
4 (a) J. Muzart, Bull. Soc. Chim. Fr., 1986, 65; (b) P. C. B. Page and
T. J. McCarthy, in Comprehensive Organic Synthesis, ed. B. M. Trost 17 K. P. Kornecki and J. F. Berry, Eur. J. Inorg. Chem., 2012, 562.
and I. Flemming, Pergamon, Oxford, 1991, vol. 7; (c) V. Weidmann 18 O. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42, 1440.
and W. Maison, Synthesis, 2013, 2201.
5 (a) T. Dohi, N. Takenaga, A. Goto, H. Fujioka and Y. Kita, J. Org.
19 N. R. Candeias, C. A. Afonso and P. M. Gois, Org. Biomol. Chem.,
2012, 10, 3357.
Chem., 2008, 73, 7365; (b) Y. Zhao and Y.-Y. Yeung, Org. Lett., 2010, 20 We thank the referees for their valuable comments, which helped us
12, 2128; (c) M. Ochiai, T. Ito, H. Takahashi, A. Nakanishi,
to revise the mechanism proposal.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 5852--5855 | 5855