ORGANIC
LETTERS
2009
Vol. 11, No. 1
5-8
Synthesis of C14,15-Dihydro-C22,25-epi
North Unit of Cephalostatin 1 via
“Red-Ox” Modifications of Hecogenin
Acetate†
Seongmin Lee,* Daniel Jamieson, and Philip L. Fuchs*
Department of Chemistry, Purdue UniVersity, West Lafayette, Indiana 47907
Received September 10, 2008
ABSTRACT
The C14,15-Dihydro-C22,25-epi north unit of cephalostatin 1 has been synthesized in 11 operations from commercially available hecogenin
acetate via multiple reductions and oxidations. The key transformations include (i) CrVI-catalyzed E-ring opening, (ii) C17 hydroxylation, and
(iii) a base-triggered cyclization cascade.
The cephalostatins and ritterazines are structurally unique
marine natural products that display extreme cytotoxicity
against various human cancers.1 The targets cephalostatin
1, cephalostatin 7, cephalostatin 12, ritterazine M, and
ritterazine K have been synthesized2 and we and others3 have
been active in the synthesis and testing of analogs. The 45
members of the cephalostatin and ritterazine family, along
with the growing number of analogs and related mono-
steroidal glycosides, provided some insight into the structure-
activity relationships (SARs) and common pharmacophores
of these potent cytotoxins:4 (1) “polarity match” consisting
of polar north domains and less polar south domains with a
connecting pyrazine moiety; (2) bis-spiroketals as prooxo-
carbenium moieties; (3) C17 (north) and C23′ (south)
hydroxyl group; and (4) ∆14 olefin moiety.
† Cephalostatin Support Studies. 36. For 34, see: Lee, J. S.; Cao, H.;
Fuchs, P. L. J. Org. Chem. 2007, 72, 5820. For 35, see: Lee, S.; LaCour,
T. G.; Fuchs, P. L. Chem. ReV. 2008, in press.
Semiempirical calculations for rationalizing the SAR of
the bis-steroidal pyrazines revealed a strong correlation
(1) (a) Pettit, G. R.; Inoue, M.; Herald, D. L.; Krupa, T. S. J. Am. Chem.
Soc. 1988, 110, 2006. (b) Pettit, G. R.; Inoue, M.; Kamano, Y.; Herald,
D. L. Chem. Commun. 1988, 1440. (c) Pettit, G. R.; Xu, J. P.; Schimidt,
J. M. Bioorg. Med. Chem. Lett. 1995, 5, 2027. (d) Fukuzawa, S.; Matsunaga,
S.; Fusetani, N. J. Org. Chem. 1994, 59, 6164. (e) Fukuzawa, S.; Matsunaga,
S.; Fusetani, N. J. Org. Chem. 1995, 60, 608. (f) Fukuzawa, S.; Matsunaga,
S.; Fusetani, N. Tetrahedron 1995, 51, 6707. (g) Fukuzawa, S.; Matsunaga,
S.; Fusetani, N. J. Org. Chem. 1997, 62, 4484. (h) Fukuzawa, S.; Matsunaga,
S.; Fusetani, N. Tetrahedron Lett. 1996, 37, 1447.
(3) (a) Heathcock, C. H.; Smith, S. C. J. Org. Chem. 1994, 59, 6828.
(b) Jautelat, R.; Muller-Fahrnow, A.; Winterfeldt, E. Chem. Eur. J. 1999,
5, 1226. (c) Basler, S.; Brunck, A.; Jautelat, R.; Winterfeldt, E. HelV. Chim.
Acta 2000, 83, 1854, and references therein. (d) Phillips, S. T.; Shair, M. D.
J. Am. Chem. Soc. 2007, 129, 6589. (e) Taber, D. F.; Taluskie, K. V. J.
Org. Chem. 2006, 71, 2797. (f) Betancor, C.; Freire, R.; Perez-Martin, I.;
Prange, T.; Sua´rez, E. Org. Lett. 2002, 4, 1295. (g) Taber, D. F.; Joerger,
J.-M. J. Org. Chem. 2008, 73, 4155. (h) Taber, D. F.; DeMatteo, P. W.;
Taluskie, K. V. J. Org. Chem. 2007, 72, 1492.
(2) (a) LaCour, T. G.; Guo, C.; Boyd, M. R.; Fuchs, P. L. Org. Lett.
2000, 2, 33. (b) Lee, S.; Fuchs, P. L. Org. Lett. 2002, 4, 317. (c) LaCour,
T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J. Am. Chem. Soc.
1998, 120, 692. (d) Kim, S.; Sutton, S. C.; Guo, C.; LaCour, T. G.; Fuchs,
P. L. J. Am. Chem. Soc. 1999, 121, 2056.
(4) (a) Pettit, G. R.; Tan, R.; Xu, J. P.; Ichihara, Y.; Williams, M. D.;
Boyd, M. R. J. Nat. Prod. 1998, 61, 953, and references therein. (b)
Fukuzawa, S.; Matsunaga, S.; Fusetani, N. J. Org. Chem. 1997, 62, 4484 and
references therein. (c) Yu, W.; Jin, Z. J. Am. Chem. Soc. 2001, 123, 3369.
10.1021/ol802122p CCC: $40.75
Published on Web 12/04/2008
2009 American Chemical Society