6246
C. Gill et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6244–6247
Table 1
All the compounds, 9b, 9c, 9e, 9f and 9g that were active in the
first level screening were then tested to determine the actual min-
imum inhibitory concentration (MIC), wherein, compounds 9b, 9c
and 9g have been proven to be the most active, with MIC values
ranging from 0.32 to 0.58.
Antibacterial activity21 of the compounds 9a–9k (The value indicates bacterial growth
inhibition measured in mm).
Compound
Organisms
Sa
Pa
Ec
St
In conclusion, the antimycobacterial screening of the novel ser-
ies has demonstrated emergence of potent derivatives that has
highly electronegative part, that is, ‘Fluorine’ and may be due to
the presence of [1,2,3]-triazole ring attached to the benzimidazole.
Specifically compounds 9b, 9c and 9g, due to the better activity
against the mycobacteria, are the best choice for the preparations
of new derivatives in order to improve its effectiveness on intracel-
lular mycobacteria (macrophage) or in infected animal. Also, we
have developed an efficient methodology for the synthesis of a 2-
(3-fluoro-phenyl)-1-[1-(substituted-phenyl)-1H-[1,2,3]-triazol-4-
yl-methyl)-1H-benzo[d] imidazole derivatives and towards the
development of new pharmacophore. Finally it can be concluded
that an ideal antimycobacterial agent with minimal toxicity and
potential activity can be designed using above said compounds
as lead molecules.
9a
9b
9c
9d
9e
9f
Gent
9g
9h
9i
9j
9k
Gent
31
32
26
21
20
18
34
33
26
18
16
18
34
33
31
19
24
26
13
35
34
28
13
19
20
35
29
30
20
19
18
21
31
32
17
21
14
19
31
30
29
19
23
21
18
30
31
18
18
17
17
30
Sa: Staphylococcus aureus, Ec: Escherichia coli, Pa: Pseudomonas aeruginosa, St: Sal-
monella typhosa, Gent: Gentamycin.
Table 2
First antituberculosis screening of compounds 9a–9k.
Acknowledgments
Compound
R1
R2
R3
MICa
GI (%)b
The authors are thankful to The Head, Department of Chemistry,
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-
431004 (MS), India for providing laboratory facility and Wockhardt
Research Centre, Aurangabad, Maharashtra, India for their valuable
support.
9a
9b
9c
9d
9e
9f
9g
9h
9i
F
H
H
OMe
H
F
F
H
H
F
F
F
F
F
H
H
Ome
Me
F
H
CF3
H
<6.25
<6.25
<6.25
<6.25
<6.25
<6.25
<6.25
<6.25
<6.25
<12.5
<12.5
—
96
96
—
96
96
96
—
—
—
—
H
H
H
H
H
H
H
H
References and notes
9j
9k
Me
H
1. Snider, D. E.; Raviglione, M.; Kochi, A. In Tuberculosis: pathogenesis; Bloom, B.,
Ed., 1st ed.; Protection and Control: Global Burden of Tuberculosis; ASM Press:
Washington, DC,, 1994; p 3.
2. Ballell, L.; Field, R. A.; Duncan, K.; Young, R. J. Antimicrob. Agents Chemotheraphy
2005, 49, 2153.
3. (a) Neu, H. C. Science 1992, 257, 1064; (b) Spigelman, M. K. New tuberculosis
therapeutics: a growing pipeline. J. Infect. Dis 2007, 196, S28; (c) Cegielski, J. P.;
Chin, D. P.; Espinal, M. A.; Frieden, T. R.; Rodriquez Cruz, R.; Talbot, E. A.; Weil,
D. E.; Zaleskis, R.; Raviglione, M. C. Prospects for the 21st century. Infect. Dis. Clin.
North Am 2002, 161, 1.
Me
a
MIC in (l
g/mLÀ1). MIC of rifampin: 0.015–0.125 mg mLÀ1 versus M. tubercu-
losis H37Rv (97% inhibition).
b
Growth inhibition of virulent H37Rv strain of M. tuberculosis.
Table 3
Second level antituberculosis screening
4. Cottet, Fabrice.; Marull, Marc.; Lefebvre, Olivier.; Schlosser, Manfred. Eur. J. Org.
Chem. 2003, 1559 (and reference cited within [1–9]).
SN
MIC (l
M)a
5. a O’Neil, M. J.; Smith, M.; Heckman, P.E. (Eds), Merck and Co. Inc, Monograph
Number 861.13th Edition, CAS No. 68844-77-9.; b Monograph Number 5378.
CAS No. 103577-45-3.; c Monograph Number 4144. CAS No. 31430-15-6.; d
Monograph Number 3484. CAS No. 548-73-2.
6. Babaoghe, K.; Page, M. A.; Johns, V. C.; Naismith, J. H.; Lee, R. E. Novel Biorg. Med.
Chem. Lett. 2003, 13, 3227.
9b
9c
9e
9f
0.34
0.58
6.25
3.13
0.32
9g
7. Shiradkar, M. R.; Bhandari, S. V.; Kale, R. P.; Laghate, A.; Rathi, A. Asian J. Chem.
2006, 18, 2700.
a
Actual minimum inhibitory concentration (MABA assay).
8. (a) Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057; (b)
Alvarez, R.; Velarquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlsson, A.;
Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185; (c) Velarquez, S.;
Alvarez, R.; Perez, C.; Gago, F.; De, C.; Balzarini, J.; Camarasa, M. J. Antivir. Chem.
Chemother. 1998, 9, 481.
9. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.;
Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris,
J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D. B.; Yagi, H. J. Med. Chem. 2000, 43, 953.
10. Ventura, I.; Perezgonzales, J.; Ramon, D. Microbiol. Lett. 1997, 149, 207.
11. Brockunier, L. L.; Parmee, W. P.; Forrest, M. J.; Hom, G. J.; Maclutyre, D. E.; Ok,
H. O.; Colwell, L. F.; Dena, L.; Feeney, W. P.; Candelore, M. R.; Cascuri, M. A.;
Tota, L.; Wyvratt, M. J.; Fisher, M. H.; Weber, A. E. Bioorg. Med. Chem. Lett. 2000,
10, 2111.
all the alterations made 9b, 9c, 9f and 9g, shown promising activ-
ity, that is, >96% of inhibition at 6.25 mg concentration, proving
that the modifications are towards synthesis of a pharmacophore.
The next structural modification done was a trifluoromethyl sub-
stitution product, 9i but this change resulted in a substantial loss
of biological activity. This loss may indicate retardation in the
intracellular transport due to highly electronegativity in one re-
gion. In case of electron donating groups, like methyl substitutions
resulted in loss of activity. The biological data generated reveals
that compounds having an electron-withdrawing group attached
may prove a template for anti tuberculosis activity for further
development. It was also observed that the promising antimicrobi-
als have proved to be better antimycobacterials. Results obtained
clearly related to the electron withdrawing ability of the substitu-
ents on the benzyl nucleus with heterocyclic ring. Even though
cytotoxicity has not been evaluated for this series of molecules.
So compound could form a promising core for lead optimization.
[12]. Patai, S. The Chemistry of the Azide gr; Inter-Science publisher: New York, N Y.,
1971. 331-388.
13. Michaelidou, A. S.; Hadjipavloulitina, D. Chem. Rev. 2005, 105, 3253.
14. (a) Review on [1,2,3] triazoles, Dehne, H. in Methoden der Organischem chemie
(houben- Weyl) (E.Schumann, Ed.), Thieme: Stuttgart, vol E8d 1994, 305–405.;
(b) Wamhoff, H. in Katritzky, A.R.; Rees, C.W (Eds.), Comprehensive Heterocyclic
Chemistry. Pergamon: Oxford, 1984, vol. 5, pp. 669–732.; (c) Fan, W. Q.;
Katritzky, A. R. In Comprehensive Heterocyclic Chemistry II: Katritzky, A. R.; Rees,
C. W.; Scriven, E. F. Eds. Elsevier Science: Oxford, 1996, vol. 4, 1–126.
15. Thimmegoda, N. R.; Nanjunda Swamy, S.; Ananda Kumar, C. S.; Yip, G. W.;
Rangppa, K. S. Biorg. Med. Chem. Lett. 2008, 18, 432.