Inorganic Chemistry
Article
35 (Iron Transport and Storage in Microorganisms, Plants and
Animals), pp 239−327.
CONCLUSION
■
Two new analogs of the enterobactin have been synthesized:
the one lipophilic having 8-hydroxyquinoline groups (oxino-
bactin) and the other hydrophilic having 8-hydroxyquinoline-5-
sulfonate groups (sulfoxinobactin). The X-ray structure of the
ferric oxinobactin complex indicates C3 symmetry and slight
distortion from the octahedral geometry having the Δ
configuration. An interesting comparison can be made between
the ferric complexes of oxinobactin and the ligands COX200 or
COX2000 having the same chelating units and a C-pivot
tripodal scaffold grafted with a polyoxyethylenic chain, n = 3 or
45, respectively.35 The geometry around the iron cation is very
similar (distances and angles), indicating that the interaction
between the cation and the donor groups is of similar
magnitude for these two ligands. This suggests that the scaffold
structure has no effect on the interaction strength between the
chelating units and the iron cation. Furthermore, the efficiency
of the iron complexation, measured by the pFe, is enhanced by
4 pFe units between COX2000 (having a longer polyox-
yethylenic chain than COX200 allowing solubility in water) and
oxinobactin over the pH range 2−9. This suggests that the
predisposition of the chelating units is responsible for the gain
in stability of ferric oxinobactin over ferric COX2000. However,
no gain in stability is observed for the 8-hydroxyquinoline-5-
sulfonate chelating units by comparison of sulfoxinobactin and
O-TRENSOX11 having a TREN scaffold. Our results provide
additional evidence of the extraordinary ability of the trilactone
scoffold of enterobactin to predispose a great variety of
chelating units for selective and strong complexation of the
ferric ion and highlight the interest for ligands having the 8-
hydroxyquinoline moiety. Other complexing subunits can be so
intended to be transplanted, bringing additional properties as
fluorescence for intracellular localization of the iron.
(6) O’Brien, J. G.; Gibson, F. Biochim. Biophys. Acta 1970, 215, 393−
402.
(7) Pollack, J. R.; Neilands, J. B. Biochem. Biophys. Res. Commun.
1970, 38, 989−992.
(8) Loomis, L. D.; Raymond, K. N. Inorg. Chem. 1991, 30, 906−911.
(9) Mossialos, D.; Meyer, J. M.; Budzikiewicz, H. P. Appl. Environ.
Microbiol. 2000, 66, 487−492.
̀
(10) Baret, P.; Beguin, C.; Boukhalfa, H.; Caris, C.; Laulhere, J.-P.;
Pierre, J.-L.; Serratrice, G. J. Am. Chem. Soc. 1995, 117, 9760−9761.
(11) Serratrice, G.; Boukhalfa, H.; Beguin, C.; Baret, P.; Caris, C.;
Pierre, J.-L. Inorg. Chem. 1997, 36, 3898−3910.
(12) Biaso, F.; Baret, P.; Pierre, J.-L.; Serratrice, G. J. Inorg. Biochem.
2002, 89, 123−130.
(13) Pierre, J.-L.; Baret, P.; Serratrice, G. Curr. Med. Chem. 2003, 10,
1077−1084.
(14) Bush, A. I. Trends Neurosci. 2003, 26, 207−214.
(15) Boldron, C.; Van der Auwear, I.; Deraeve, C.; Gornitzka, H.;
Wera, S.; Pitie,
6, 1976−1980.
́
M.; Van Leuven, F.; Meunier, B. ChemBioChem 2005,
(16) Cui, Z.; Lockman, P. R.; Atwood, C. S.; Hsu, C.-H.; Gupte, A.;
Allen, D. D.; Mumper, R. J. Eur. J. Pharm. Biopharm. 2005, 59, 263−
272.
(17) Cherny, R. A.; Barnham, K. J.; Lynch, T.; Volitakis, I.; Li, Q.-X.;
McLean, C. A.; Multhaup, G.; Beyruether, K.; Tanzi, R. E.; Masters, C.
L.; Bush, A. I. J. Struct. Biol. 2000, 130, 209−216.
(18) Dedeoglu, A.; Cormier, K.; Payton, S.; Tseitlin, K. A.; Kremsky,
J. N.; Lai, L.; Li, Q.-X.; Moir, R. D.; Tanzi, R. E.; Bush, A. I.; Kowall, N.
W.; Rogers, J. T.; Huang, X. Exp. Geront. 2004, 39, 1641−1649.
(19) Lee, J.-Y.; Friedman, J. E.; Angel, I.; Kozak, A.; Koh, J.-Y.
Neurobiol. Aging 2004, 25, 1315−1321.
(20) Deraeve, C.; Pitie, M.; Mazarguil, H.; Meunier, B. New J. Chem.
2007, 31, 193−195.
(21) Deraeve, C.; Boldron, C.; Maraval, A.; Mazarguil, H.; Gornitzka,
H.; Vendier, L.; Pitie, M.; Meunier, B. Chem.Eur. J. 2008, 14, 682−
́
696.
(22) Cherny, R. A.; Atwood, C. S.; Xilinas, M. E.; Gray, D. N.; Jones,
W. D.; McLean, C. A.; Barnham, K. J.; Volitakis, I.; Fraser, F. W.; Kim,
Y. S.; Huang, X. D.; Goldstein, L. E.; Moir, R. D.; Lim, J. T.;
Beyreuther, K.; Zheng, H.; Tanzi, R. E.; Masters, C. L.; Bush, A. I.
Neuron 2001, 30, 665−676.
(23) Ritchie, C.; Bush, A. I.; Mackinnon, A.; Macfarlane, S.; Mastwyk,
M.; McGregor, L.; Kiers, L.; Cherny, R. A.; Li, Q.-X.; Tammer, A.;
Carrington, D.; Mavros, C.; Volitakis, I.; Xilinas, M.; Ames, D.; Davis,
S.; Beyreuther, K.; Tanzi, R. E.; Masters, C. L. Arch. Neurol. 2003, 60,
1685−1691.
(24) Bush, A. I. Neurobiol. Aging 2002, 23, 1031−1038.
(25) Meyer, M.; Telford, J. R.; Cohen, S. M.; White, D. J.; Xu, J.;
Raymond, K. N. J. Am. Chem. Soc. 1997, 119, 10093−10103.
(26) du Moulinet d’Hardemare, A.; Alnaga, N.; Serratrice, G.; Pierre,
J.-L. Bioorg. Med. Chem. Lett. 2008, 18, 6476−6478.
(27) Bastian, R.; Weberling, R.; Palilla, F. Anal. Chem. 1956, 28, 459−
462.
(28) Sheldrick, G. M. SHELXS-97, Program for crystal structure
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis of oxinobactin precursors; X-ray crystallographic data
in CIF format for ferric oxinobactin; figures showing
potentiometric and spectrophotometric titrations of sulfox-
inobactin and its ferric complexes; figures showing a plot of the
absorbance at λmax vs p[H] for Fe−oxinobactin and Fe−
sulfoxinobactin; figures showing pFe vs pH for various ligands.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
solution; University of Gottingen: Gottingen, Germany, 1997.
̈
̈
Sheldrick, G. M. SHELXL-97, Program for the refinement of crystal
structures; University of Gottingen: Gottingen, Germany; 1997.
REFERENCES
̈
̈
■
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;
Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339−341.
(29) Gans, P.; O’Sullivan, B. Talanta 2000, 51, 33−37.
(30) Rochester, C. H. Dalton Trans. 1972, 5−8.
(1) Crichton, R. R. In Inorganic Biochemistry of Iron metabolism; John
Wiley & Sons: Chichester, 2001.
(2) Kragter, J. Atlas of Metal-Ligand Equilibria in Aqueous Solution;
Halstead Press: New York, 1978.
(3) Boukhalfa, H.; Crumbliss, A. L. BioMetals 2002, 15, 325−339.
(4) Telford, J. R.; Raymond, K. N. Siderophores. In Comprehensive
Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D.
(31) Gans, P.; Sabatani, A.; Vacca, A. Talanta 1996, 43, 1739−1743.
(32) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D.
̈
Talanta 1985, 32, 95−101.
(33) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D.
D., Vogtle, F., Eds.; Elsevier Science Ltd.; Oxford, 1996, Vol. 1; pp
̈
̈
Talanta 1985, 32, 257−264.
245−266.
(5) Albrecht-Gary, A.-M.; Crumbliss, A. L. In Metal Ions in Biological
Systems; Sigel, A., Sigel, H., Eds.; Marcel Dekker; New York, 1998, Vol.
(34) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D.
̈
Talanta 1986, 33, 943−951.
12150
dx.doi.org/10.1021/ic301081a | Inorg. Chem. 2012, 51, 12142−12151