“sulfolefin” ligands in an enantiodivergent manner. The appli-
cation of the present approximation for the synthesis of other
enantiopure sulfolefins, as well as their applications in other
metal promoted enantioselective processes, are being actively
investigated in our laboratories, and will be reported in due
course.
Scheme 2
Acknowledgements
γ-valerolactone derivative 14R as a single enantiomer, both in
toluene and in methanol, with excellent yields in both solvents
(Table 2, entries 7 and 8). The Rh-catalyzed 1,4-adition of aryl
boronic acids to acyclic unsaturated ketones is a more challen-
ging task, and most of the catalysts described in the literature
afford the addition product with only moderate enantioselectiv-
ity. Based on the excellent catalytic behavior of ligand 5, with
cyclic substrates, we decided to prove its capacity in acyclic sub-
strates. We were pleased to find that addition of phenyl boronic
acid to 3-pentenone 15, afforded the desired 4-phenylpentan-2-
one 16 in 78% yield and an interesting 94% ee (Scheme 2),
which represents one of the highest enantioselective processes
described to date.
This work was supported by the Ministerio de Ciencia e Innova-
ción (grant No. CTQ2010-21755-CO2-00), and the Junta de
Andalucía (P07-FQM-2774). A. Chelouan thanks the “Minis-
terio de Asuntos Exteriores y de Cooperacion” for a predoctoral
MAEC-AECID grant.
Notes and references
1 (a) G. Solladié, Synthesis, 1981, 185; (b) G. H. Posner, Acc. Chem. Res.,
1987, 20, 72; (c) J. L. García-Ruano, J. C. Carretero, M. C. Carreño, L.
C. Martín and A. Urbano, Pure Appl. Chem., 1996, 68, 925.
2 (a) C. Carreño, G. Hernández-Torres and M. Ribagorda, Chem.
Commun., 2009, 6129; (b) H. Pellissier, Tetrahedron, 2006, 62, 5559.
3 (a) I. Fernández and N. Khiar, Chem. Rev., 2003, 103, 3651;
(b) W. Elzbieta and W. Jacek, Chem. Rev., 2009, 110, 4303.
In order to gain a better insight into the mechanism of the
described process, and to unravel the motives of the high enan-
tioselectivity observed, we conducted some structural studies in
solution. Together with the alkene moiety, the sulfolefin ligands
possess three other heteroatoms, which can coordinate to the
rhodium, namely the nitrogen, sulfur, and oxygen. Considering
only the sulfinyl moiety (S–O) of the sulfinamide, and in
analogy with the sulfoxide group, one can predict an S-coordi-
nation mode to the rhodium. In this regard, the α-protons to the
sulfinyl group serve as excellent reporters for the determination
of the coordination mode of the sulfinyl group by 1HNMR spec-
troscopy.3a,8 Therefore, ligand 1 with three methinic protons con-
stitutes an ideal ligand for our purpose. Reaction of 1 equiv. of
ligand 1 with 0.5 equiv of [Rh(C2H4)Cl]2 in deuterated methyl-
ene chloride leads to the immediate formation of the rhodium
complex. The most significant characteristics of the Rh-complex
are the downfield chemical shift of the methylsulfinyl group
from 2.5 pp to 3.7 ppm, and a 3 ppm upfield chemical shift of
the olefinic protons from 6 ppm to 3 ppm (see the supporting
information†). These data are pointing out that the sulfolefins act
as bidentate ligands, coordinating to the rhodium atom through
the olefin and sulfinyl sulfur.
In conclusion, we have developed an efficient approximation
to mixed olefin/sulfinamide ligands enclosing a chiral sulfur
atom as the sole chiral center. The high modularity of the
reported design, allows a rapid optimization of the substituent at
the sulfinyl sulfur, and permits the synthesis of an efficient cata-
lyst for the Rh-catalyzed 1,4-addition of boronic acids to electron
deficient olefins. The new catalyst displays a high substrate
scope, as the addition adducts from cyclopentenone, cyclohexe-
none, cycloheptenone, and unsaturated lactone are usually
obtained as a single enantiomer. Importantly, the new catalyst
exhibits also high enantioselectivity in the addition of boronic
acids to the more challenging linear unsaturated ketones.
Additionally, along with tailoring of the steric and electronic
character of the sulfinyl substituent, the use of the DAG-method-
ology allows the synthesis of both enantiomers of the
4 (a) J. A. Ellman, T. D. Owens and T. P. Tang, Acc. Chem. Res., 2002, 35,
984; (b) P. Zhou, B. C. Chen and F. A. Davis, Tetrahedron, 2004, 60,
8003.
5 C. Carreño, Chem. Rev., 1995, 95, 1717.
6 M. T. Robak, M. A. Herbage and J. A. Ellman, Chem. Rev., 2010, 110,
624.
7 (a) H. B. Kagan and B. Ronan, Rev. Heteroat. Chem., 1992, 7, 92;
(b) M. Calligaris and O. Carugo, Coord. Chem. Rev., 1996, 153, 83.
8 I. Fernández and N. Khiar, in Organosulfur Chemistry in Asymmetric
Synthesis, ed. T. Toru and C. Bolm, Wiley-VCH-Verlag, Weinheim, 2008,
pp. 265.
9 (a) N. Khiar, I. Fernández and F. Alcudia, Tetrahedron Lett., 1993, 34,
123; (b) J. V. Allen, J. F. Bower and J. M. J. Williams, Tetrahedron:
Asymmetry, 1994, 5, 1895; (c) K. Hiroi, I. Izawa, T. Takizawa and
K. Kawai, Tetrahedron, 2004, 60, 2155.
10 (a) R. Mariz, X. J. Luan, M. Gatti, A. Linden and R. Dorta, J. Am.
Chem. Soc., 2008, 130, 2172; (b) J. J. Burgi, R. Mariz, M. Gati,
E. Drinkel, X. J. Luan, S. Blummenrit, A. Linden and R. Dorta, Angew.
Chem., Int. Ed., 2009, 48, 2768.
11 (a) Q.-A. Chen, X. Dong, M.-W. Chen, D.-S. Wang, Y.-G. Zhou and Y.-
X. Li, Org. Lett., 2010, 12, 1928; (b) J. Che, J. Chen, F. Lang, X. Zhang,
L. Cun, J. Zhu, J. Deng and J. Liao, J. Am. Chem. Soc., 2010, 132, 2172.
12 T. Thaler, L.-N. Gou, A. K. Steib, M. Raducan, K. Karaghiosoff,
P. Mayer and P. Knochel, Org. Lett., 2011, 13, 3182.
13 W.-Y. Qi, T.-S. Zhu and M.-H. Xu, Org. Lett., 2011, 13, 3410.
14 X. Feng, Y. Wang, B. Wei, J. Yang and H. Du, Org. Lett., 2011, 13, 3300.
15 (a) I. Fernández, V. Valdivia and N. Khiar, J. Org. Chem., 2008, 73, 745;
(b) F. Colobert, V. E. Valdivia, S. Choppin, F. Leroux, I. Fernández and
N. Khiar, Org. Lett., 2009, 11, 5130; (c) I. Fernández, V. Valdivia,
B. Gori, F. Alcudia, E. Alvarez and N. Khiar, Org. Lett., 2005, 7, 1307;
(d) I. Fernández, A. Alcudia, B. Gori, V. Valdivia, M. V. García and
N. Khiar, Org. Biomol. Chem., 2010, 8, 4388.
16 (a) I. Fernández, N. Khiar, J. M. Llera and F. Alcudia, J. Org. Chem.,
1992, 57, 6789; (b) N. Khiar, I. Ferández and F. Alcudia, Tetrahedron
Lett., 1994, 35, 5719; (c) N. Khiar, F. Alcudia, J.-L. Espartero,
L. Rodríguez and I. Fernández, J. Am. Chem. Soc., 2000, 122, 7598.
17 (a) D. Balcells, G. Ujaque, I. Fernández, N. Khiar and F. Maseras, J. Org.
Chem., 2006, 71, 6388; (b) D. Balcells, G. Ujaque, I. Fernández,
N. Khiar and F. Maseras, Adv. Synth. Catal., 2007, 349, 2103.
18 (a) N. Miyaura, Organoboranes in Synthesis, American Chemical
Society, Washington, 2001, 94; (b) T. Hayashi and K. Yamasaki, Chem.
Rev., 2003, 103, 2829; (c) T. Hayashi, Pure Appl. Chem., 2004, 76, 465;
(d) T. Hayashi, Synlett, 2001, 897; (e) K. Yoshida, T. Hayashi, Modern
Rhodium-Catalyzed Organic Reactions, ed. P. A. Evans; Wiley-VCH:
Weinheim, Germany, 2005, 55; (f) H. J. Edwards, J. D. Hargrave,
S. D. Penrose and C. G. Frost, Chem. Soc. Rev., 2010, 39, 2093.
2368 | Org. Biomol. Chem., 2012, 10, 2366–2368
This journal is © The Royal Society of Chemistry 2012