4 M. S. Betson, J. Clayden, M. Helliwell, P. Johnson, L. W. Lai,
J. H. Pink, C. C. Stimson, N. Vassiliou, N. Westlund, S. A. Yasin
and L. H. Youssef, Org. Biomol. Chem., 2006, 4, 424.
5 M. S. Betson, A. Bracegirdle, J. Clayden, M. Helliwell, A. Lund,
M. Pickworth, T. J. Snape and C. P. Worrall, Chem. Commun.,
2007, 754.
6 J. Clayden, C. P. Worrall, W. Moran and M. Helliwell, Angew. Chem.,
Int. Ed., 2008, 47, 3234; J. Clayden, D. Mitjans and L. H. Youssef,
J. Am. Chem. Soc., 2002, 124, 5266; J. Clayden, P. Johnson, J. H. Pink
and M. Helliwell, J. Org. Chem., 2000, 65, 7033; J. Clayden and
L. W. Lai, Angew. Chem., Int. Ed., 1999, 38, 2556; J. Clayden,
L. W. Lai and M. Helliwell, Tetrahedron, 2004, 60, 4399.
7 J. Clayden and N. Vassiliou, Org. Biomol. Chem., 2006, 4,
2667.
Scheme 5 1,15 Remote diastereocontrol.
other conformers. Diastereoselectivity provides an empirical
indication of the degree to which conformation is non-
random, and we set out to make a series of oligimeric ureas
terminated, like monourea 7, by a sulfoxide and by a reactive
carbonyl substituent. The synthesis of the diurea 14, a sub-
strate for potential 1,15-stereochemical control, is shown in
Scheme 4. We used the strategy of chain elongation with
3-nitrophenyl isocyanate,13,14 followed by reduction to the
aniline 12 and trapping with 2-bromophenylisocyanate,
converting 13 to 14 using enantiomerically enriched
di-t-butylthiosulfinate. If 14 adopts a stacked, helical struc-
ture, we expect its conformation to approximate to that shown
as 14A.13
8 J. Clayden, A. Lund, L. Vallverdu´ and M. Helliwell, Nature
(London), 2004, 431, 966; J. Clayden, A. Lund and
L. H. Youssef, Org. Lett., 2001, 3, 4133; J. Clayden,
M. N. Kenworthy and L. H. Youssef, Tetrahedron Lett., 2000,
41, 5171; J. Clayden, J. H. Pink and S. A. Yasin, Tetrahedron Lett.,
1998, 39, 105; J. Clayden, L. W. Lai and M. Helliwell, Tetrahedron:
Asymmetry, 2001, 12, 695; J. Clayden, N. Westlund,
C. S. Frampton and M. Helliwell, Org. Biomol. Chem., 2006, 4,
455.
9 J. Clayden, L. Lemiegre, M. Pickworth and L. Jones, Org. Biomol.
Chem., 2008, 6, 2908.
10 T. Adler, J. Bonjoch, J. Clayden, M. Font-Bardı
X. Solans, D. Sole and L. Vallverdu, Org. Biomol. Chem., 2005, 3,
3173.
´
a, M. Pickworth,
´
´
11 G. Lepore, S. Migdal, D. E. Blagdon and M. Goodman, J. Org.
Chem., 1973, 38, 2590; U. Lepore, G. Castronuovo Lepore,
P. Ganis, G. Germain and M. Goodman, J. Org. Chem., 1976,
41, 2134; K. Yamaguchi, G. Matsumura, H. Kagechika,
I. Azumaya, Y. Ito, A. Itai and K. Shudo, J. Am. Chem. Soc.,
1991, 113, 5474; T. L. Kurth and F. D. Lewis, J. Am. Chem. Soc.,
2003, 125, 13760.
12 A. Tanatani, H. Kagechika, I. Azumaya, R. Fukutomi, Y. Ito,
K. Yamaguchi and K. Shudo, Tetrahedron Lett., 1997, 38, 4425;
F. D. Lewis, T. L. Kurth, C. M. Hattan, R. C. Reiter and
C. D. Stevenson, Org. Lett., 2004, 6, 1605.
Aldehyde 14 was treated with a selection of nucleophiles
under comparable conditions to those used for 7, but in
most cases diastereoselectivities close to 1 : 1 were observed.
With PhMgBr in CH2Cl2 in the presence of DMPU, however,
a pair of alcohols 15 was obtained in 90% yield with a
diastereoisomeric ratio of 65 : 5 (Scheme 5). A selectivity
of the order of 2 : 1 is moderate by any standards, but to
attain any selectivity over 14 bond lengths is nonetheless
noteworthy.21
13 J. Clayden, L. Lemiegre and M. Helliwell, J. Org. Chem., 2007, 72,
2302.
14 J. Clayden, L. Lemiegre, G. A. Morris, M. Pickworth, T. J. Snape
and L. H. Jones, J. Am. Chem. Soc., 2008, 130, 15193.
15 J. Clayden, H. Turner, M. Pickworth and T. Adler, Org. Lett.,
2005, 7, 3147; J. Clayden, H. Turner, M. Helliwell and E. Moir,
J. Org. Chem., 2008, 73, 4415; J. Clayden and J. Dufour, Tetra-
hedron Lett., 2006, 47, 6945; J. Clayden, J. Dufour, D. Grainger
and M. Helliwell, J. Am. Chem. Soc., 2007, 129, 7488; J. Clayden
and U. Hennecke, Org. Lett., 2008, 10, 3567.
The diastereoisomers of 15 were oxidised to ketone 16 and
then reduced back to 15 using the same reducing agents as
shown in Table 1. Low selectivities were obtained,22 but as
before, an inversion of sense occurred on exchanging simple
hydride reducing agents for DIBAL in CH2Cl2. This latter
reagent returned a ratio of 30 : 70 of the two diastereoisomeric
alcohols, another example of ca. 2 : 1 stereocontrol over 14
bond lengths.
16 K. Mikami, M. Shimizu, H.-C. Zhang and B. E. Maryanoff,
Tetrahedron, 2001, 57, 2917.
17 For other recent examples of ‘‘remote’’ stereocontrol (44 bond
Our aim in this paper has been to show that well-defined
conformational control of otherwise flexible molecules allows
remote control of diastereoselectivity. In the oligoureas we use
as our substrates, it is evident that conformational control
begins to degrade rapidly after the second urea subunit is
incorporated, a result which suggests that the well-defined
conformations seen in the crystal structures of these
compounds is not mirrored in solution.
lengths) using
M. A. Fernandez-Iba
Fernandez, J. Org. Chem., 2005, 70, 1796; J. L. Garcı
A. M. Martın-Castro, F. Tato and C. J. Pastor, J. Org. Chem.,
2005, 70, 7346; Y. Arroyo, F. Rodriguez, M. Santos, M. A. Sanz
Tejedor and J. L. Garcıa Ruano, J. Org. Chem., 2007, 72, 1035.
a
sulfoxide, see: J. L. Garcı
nez, M. C. Maestro and M. M. Rodrı
a Ruano,
´
a
Ruano,
´
´
´
guez-
´
´
´
´
18 P. V. Jog, R. E. Brown and D. K. Bates, J. Org. Chem., 2003, 68,
8240.
19 For a discussion of selectivity in related additions to atropisomeric
ureas, see ref. 15b and to atropisomeric amides, see: J. Clayden,
C. McCarthy, N. Westlund and C. S. Frampton, J. Chem. Soc.,
Perkin Trans. 1, 2000, 1363. Our reasoning here is based on the
assumption that both conformers have approximately equal reac-
tivity. For a discussion of the application of the Winstein–Holness
equation in comparable situations, see: J. I. Seeman, Chem. Rev.,
1983, 83, 83; N. S. Zefirov, Tetrahedron, 1977, 33, 2719.
20 J. Clayden, N. Westlund, R. L. Beddoes and M. Helliwell, J. Chem.
Soc., Perkin Trans. 1, 2000, 1351.
Notes and references
z Crystallographic data for 7 and 10a (Nu = Ph) has been deposited
with the Cambridge Crystallographic Data Centre, deposition
numbers 703570 and 703571.
1 S. Hecht and I. Huc, in Foldamers, Weinheim, 2007; D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem. Rev.,
2001, 101, 3893; S. H. Gellman, Acc. Chem. Res., 1998, 31,
173.
21 The current ‘‘record’’ for remote stereochemical control stands at
1,23 (ref. 8). For examples of 41,10 stereochemical control, see
refs. 8 and 16.
2 R. W. Hoffmann, Angew. Chem., Int. Ed., 2000, 39, 2054.
3 J. Clayden, Chem. Commun., 2004, 127.
22 Stereochemistry of 15 was assigned by analogy with 10. Ketone 16
exists as a mixture of conformers by H NMR.
1
ꢂc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 547–549 | 549