D
Q.-Q. Cheng et al.
Letter
Synlett
In summary, the non-heme iron-catalyzed carbene in-
sertion into C(sp3)–H bonds of alkanes has been realized.12
The readily available iron complex of BPMEN was found to
be a powerful and highly chemoselective catalyst for the re-
action. The easy modification of BPMEN leaves rooms for
the development of iron catalysts with tunable reactivity
and selectivity. This iron-catalyzed C–H insertion reaction
provides an efficient strategy for C–H functionalization of
alkanes.
(5) For reviews on iron catalysis, see: (a) Iron Catalysis in Organic
Chemistry: Reactions and Applications; Plietker, B., Ed.; Wiley-
VCH: Weinheim, 2008. (b) Iron Catalysis: Fundamentals and
Applications, In Topics in Organometallic Chemistry; Vol. 33;
Plietker, B., Ed.; Springer-Verlag: Berlin/Heidelberg, 2011.
(c) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104,
6217. (d) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed.
2008, 47, 3317. (e) Nakamura, E.; Yoshikai, N. J. Org. Chem. 2010,
75, 6061. (f) Gopalaiah, K. Chem. Rev. 2013, 113, 3248. (g) Zhu,
S.-F.; Zhou, Q.-L. Nat. Sci. Rev. 2014, 1, 580. (h) Bauer, I.; Knölker,
H.-J. Chem. Rev. 2015, 115, 3170. (i) Guo, N.; Zhu, S.-F. Chin. J.
Org. Chem. 2015, 35, 1383.
(6) For a review on iron-catalyzed C–H functionalization, see:
(a) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. For
selected examples, see: (b) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem.
Int. Ed. 2007, 46, 6505. (c) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi,
Z.-J. Angew. Chem. Int. Ed. 2009, 48, 3817. (d) Zhang, S.-Y.; Tu, Y.-
Q.; Fan, C.-A.; Zhang, F.-M.; Shi, L. Angew. Chem. Int. Ed. 2009, 48,
8761. (e) Yoshikai, N.; Mieczkowski, A.; Matsumoto, A.; Ilies, L.;
Nakamura, E. J. Am. Chem. Soc. 2010, 132, 5568. (f) Shang, R.;
Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013,
135, 6030. (g) Ratnikov, M. O.; Xu, X.; Doyle, M. P. J. Am. Chem.
Soc. 2013, 135, 9475.
(7) For an iron porphyrin-catalyzed C–H insertion, see: (a) Mbuvi,
H. M.; Woo, L. K. Organometallics 2008, 27, 637. For stoichio-
metric C–H insertion of iron porphyrin carbenes, see: (b) Li, Y.;
Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M.; You, X.-Z. J. Am. Chem. Soc.
2002, 124, 13185.
Acknowledgment
We thank the National Natural Science Foundation of China
(21625204; 21421062; 21290182), the National Basic Research Pro-
gram of China (2012CB821600), the ‘111’ project (B06005) of the
Ministry of Education of China, and the National Program for Support
of Top-notch Young Professionals for financial support.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(8) (a) Zhu, S.-F.; Cai, Y.; Mao, H.-X.; Xie, J.-H.; Zhou, Q.-L. Nature
Chem. 2010, 2, 546. (b) Cai, Y.; Zhu, S.-F.; Wang, G.-P.; Zhou, Q.-
L. Adv. Synth. Catal. 2011, 353, 2939. (c) Shen, J.-J.; Zhu, S.-F.;
Cai, Y.; Xu, H.; Xie, X.-L.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2014,
53, 13188. (d) Guo, N.; Hu, M.-Y.; Feng, Y.; Zhu, S.-F. Org. Chem.
Front. 2015, 2, 692. (e) Yang, J.-M.; Cai, Y.; Zhu, S.-F.; Zhou, Q.-L.
Org. Biomol. Chem. 2016, 14, 5516.
(1) For reviews on C–H functionalization, see: (a) Handbook of C–H
Transformations: Applications in Organic Synthesis; Dyker, G.,
Ed.; Wiley-VCH: Weinheim, 2005. (b) C–H Activation, In Topics
in Current Chemistry; Vol. 292; Yu, J.-Q.; Shi, Z.-J., Eds.;
Springer-Verlag: Berlin/Heidelberg, 2010. (c) Labinger, J. A.;
Bercaw, J. E. Nature 2002, 417, 507. (d) Bergman, R. G. Nature
2007, 446, 391. (e) Balcells, D.; Clot, E.; Eisenstein, O. Chem. Rev.
2010, 110, 749.
(2) For reviews on C–H insertion, see: (a) Davies, H. M. L.;
Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (b) Davies, H. M. L.;
Manning, J. R. Nature 2008, 451, 417. (c) Doyle, M. P.; Duffy, R.;
Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704. (d) Slattery, C.
N.; Ford, A.; Maguire, A. R. Tetrahedron 2010, 66, 6681.
(e) Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
(3) For selected examples of rhodium-catalyzed C–H insertion, see:
(a) Doyle, M. P.; van Oeveren, A.; Westrum, L. J.; Protopopova,
M. N.; Clayton, T. W. Jr. J. Am. Chem. Soc. 1991, 113, 8982.
(b) Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. 1997, 119, 9075.
(c) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.;
Hashimoto, S. Org. Lett. 2002, 4, 3887. (d) Thu, H.-Y.; Tong, G. S.-
M.; Huang, J.-S.; Chan, S. L.-F.; Deng, Q.-H.; Che, C.-M. Angew.
Chem. Int. Ed. 2008, 47, 9747. (e) Chuprakov, S.; Malik, J. A.;
Zibinsky, M.; Fokin, V. V. J. Am. Chem. Soc. 2011, 133, 10352.
(f) Qin, C.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 9792.
(g) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L.
Nature 2016, 533, 230.
(9) Dimethyl 2,3-diphenylmaleate and dimethyl 2,3-diphenylfuma-
rate.
(10) The yields of 14a, 14b, 15a, and 15b were determined by 1H
NMR spectroscopic analysis of the crude reaction mixture using
pyrazine as the internal standard.
(11) Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc.
2000, 122, 3063.
(12) Methyl 2-cyclohexyl-2-phenylacetate (3aa); Typical Proce-
dure: Powered Fe(ClO4)2·xH2O (1.0 mg, 0.003 mmol, 1 mol%),
ligand 12 (1.0 mg, 0.0036 mmol, 1.2 mol%), and NaBArF (3.4 mg,
0.0036 mmol, 1.2 mol%) were introduced into an oven-dried
Schlenk tube in an argon-filled glovebox. After CHCl3 (1 mL) was
injected into the Schlenk tube, the solution was stirred at 25 °C
under argon atmosphere for 4 h. Cyclohexane (2a; 3 mL) and
methyl α-diazophenylacetate (1a; 52.9 mg, 0.3 mmol) were
then successively introduced into the system. The resulting
mixture was stirred at a bath temperature of 95 °C for 36 h.
After concentration in vacuo, the residue was purified by flash
chromatography on silica gel (petroleum ether/ethyl acetate,
30:1 v/v) to give methyl 2-cyclohexyl-2-phenylacetate (3aa) as
a colorless oil. Yield: 57.2 mg (0.246 mmol, 82%). 1H NMR (400
MHz, CDCl3): δ = 7.39–7.20 (m, 5 H), 3.64 (s, 3 H), 3.22 (d, J =
10.7 Hz, 1 H), 2.08–1.94 (m, 1 H), 1.83–1.57 (m, 4 H), 1.33–0.99
(m, 5 H), 0.79–0.68 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ =
174.4, 137.8, 128.5, 128.4, 127.1, 58.8, 51.7, 41.0, 32.0, 30.4,
26.3, 26.0, 25.9.
(4) For selected examples of iridium-catalyzed C–H insertion, see:
(a) Suematsu, H.; Katsuki, T. J. Am. Chem. Soc. 2009, 131, 14218.
(b) Wang, J.-C.; Xu, Z.-J.; Guo, Z.; Deng, Q.-H.; Zhou, C.-Y.; Wan,
X.-L.; Che, C.-M. Chem. Commun. 2012, 48, 4299. (c) Anding, B.
J.; Brgoch, J.; Miller, G. J.; Woo, L. K. Organometallics 2012, 31,
5586. (d) Owens, C. P.; Varela-Álvarez, A.; Boyarskikh, V.;
Musaev, D. G.; Davies, H. M. L.; Blakey, S. B. Chem. Sci. 2013, 4,
2590.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D