1016 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4
Balas et al.
(3) (a) Burstein, S. H.; Adams, J. K.; Bradshaw, H. B.; Fraioli, C.; Rossetti,
R. G.; Salmonsen, R. A.; Shaw, J. W.; Walker, J. M.; Zipkin, R. E.;
Zurier, R. B. Potential anti-inflammatory actions of the elmiric
(lipoamino) acids. Bioorg. Med. Chem. 2007, 15, 3345–3355. (b)
Burstein, S. The elmiric acids: biologically active anandamide analogs.
Neuropharmacology 2007, doi:10.1016/j.neuropharm.2007.11.011.
(4) Kogan, N. M.; Mechoulam, R. J. The chemistry of endocannabinoids.
Endocrinol. InVest. 2006, 29, 3–14.
(5) Milman, G.; Maor, Y.; Abu-Lafi, S.; Horowitz, M.; Gallily, R.; Batkai,
S.; Mo, F. M.; Offertaler, L.; Pacher, P.; Kunos, G.; Mechoulam, R.
N-Arachidonoyl L-serine, an endocannabinoid-like brain constituent
with vasodilatory properties. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
2428–2433.
(6) Saghatelian, A.; McKinney, M. K.; Bandell, M.; Patapoutian, A.;
Cravatt, B. F. A FAAH-regulated class of N-acyl taurines that activates
TRP ion channels. Biochemistry 2006, 45, 9007–9015.
(7) Mechoulam, R. Cannabinoids as Therapeutics; Mechoulam, R., Ed.;
Milestones in Drug Therapy; Birkhauser Publisher: Basel, Switzerland,
2005.
(8) Grimaldi, C.; Bibulco, M. Anandamide, an endogenous ligand of
cannabinoids receptors, inhibits human breast cancer cell proliferation
through a lipid rafts mediated mechanism. Pharmacologyonline 2007,
1, 1–45.
(26) Perry, S. N.; Johnson, I. J.; Mukhopadhyay, S. Anandamide Mediated
Angiogenesis: Interplay between CB1 Receptor and Non CB1/CB2
Anandamide Receptor. Proceedings of the 16th Annual Symposium
of Cannabinoids, Burlington, VT, 2006; International Cannabinoid
Research Society, 2006; p 61.
(27) Hilderbrandt, S.; Johnson, I. J.; Mukhopadhyay, S. CB1 Receptor and
Non-CB1/CB2 Annadmaide Receptor Mediated Differential S-Ni-
trosylation of MMP: A Novel Angiogenic Switch for the Regulation
of Angiogenesis (2008). Proceedings of the 18th Annual Symposium
of Cannbinoids, Burlington, VT, 2008; International Cannabinoid
Research Society, 2008; p 17.
(28) McCollum, L.; Howlett; Mukhopadhyay, S. Anandamide-mediated
CB1/CB2 cannabinoid receptorsindependent nitric oxide production
in rabbit aortic endothelial cells. J. Pharmacol. Exp. Ther. 2007, 321,
930–937.
(29) Daly, C. J.; McGrath, J. C. Fluorescent ligands, antibodies, and proteins
for the study of receptors. Pharmacol. Ther. 2003, 100, 101–118.
(30) Vodovozova, E. L. Photoaffinity labeling and its application in
structural biology. Biochemistry (Moscow) 2007, 72, 1–20.
(31) (a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides:
an exploding diversity of a unique class of compounds. Angew. Chem.,
Int. Ed. 2005, 44, 5188–240. (b) Bucher, G. Photochemical Reactivity
of Azides. In CRC Handbook of Organic Photochemistry and
Photobiology, 2nd ed.; Horspool, W. M., Lenci, F., Eds.; CRC Press:
Boca Raton, FL, 2004; Chapter 44. (c) Blencowe, A.; Hayes, W.
Development and application of diazirines in biological and synthetic
macromolecular systems. Soft Matter 2005, 1, 178–205. (d) Sadakane,
Y.; Hatanaka, Y. Photochemical fishing approaches for identifying
target proteins and elucidating the structure of a ligand-binding region
using carbene-generating photoreactive probes. Anal. Sci. 2006, 22,
209–218.
(9) Di Marzo, V.; Petrosino, S. Endocannabinoids and the regulation of
their levels in health and disease. Curr. Opin. Lipidol. 2007, 18, 129–
140.
(10) Howlett, A. C.; Barth, F.; Bonner, T. I.; Cabral, G.; Casellas, P.;
Devane, W. A.; Felder, C. C.; Herkenham, M.; Mackie, K.; Martin,
B. R.; Mechoulam, R.; Pertwee, R. G. International Union of
Pharmacology. XXVII. Classification of cannabinoid receptors. Phar-
macol. ReV 2002, 54, 161–202.
(32) (a) Abadji, V.; Lin, S.; Taha, G.; Griffin, G.; Stevenson, L. A.; Pertwee,
R. G.; Makriyannis, A. (R)-Methanandamide: a chiral novel ananda-
mide possessing higher potency and metabolic stability. J. Med. Chem.
1994, 37, 1889–1893. (b) Haller, V. L.; Cichewicz, D. L.; Welch,
S. P. Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive
effects of several novel compounds in the PPQ stretch test in mice.
Eur. J. Pharmacol. 2006, 546, 60–68.
(33) It must be realized that we are not looking for a specific ligand for
CB1 or CB2 receptors but for a mimic of eCBs, mainly anandamide,
to search for novel putative receptors. However, very little is known
about these targeted new receptors. It is therefore rather difficult to
anticipate what structural requirements would be needed for a synthetic
ligand.
(34) Balas, L.; Cascio, M. G.; Di Marzo, V.; Durand, T. Synthesis of a
potential photoactivatable anandamide analog. Bioorg. Med. Chem.
Lett. 2006, 16, 3765–3768.
(35) Altundas, R.; Mahadevan, A.; Razdan, R. K. A synthetic route to
anandamide analogues carrying a substituent at the terminal carbon
and an acetylene group in the end pentyl chain. Tetrahedron Lett. 2004,
45, 5449–5451.
(36) Li, C.; Xu, W.; Vadivel, S. K.; Fan, P.; Makriyannis, A. High affinity
electrophilic and photoactivatable covalent endocannabinoid probes
for the CB1 receptor. J. Med. Chem. 2005, 48, 6423–6429.
(37) Dasse, O.; Mahadevan, A.; Han, L.; Martin, B. R.; Marzo, V. D.;
Razdan, R. K. The synthesis of N-vanillyl-arachidonoyl-amide (arvanil)
and its analogs: an improved procedure for the synthesis of the key
synthon methyl 14-hydroxy-(all-cis)-5.8.11-tetradecatrienoate. Tetra-
hedron 2000, 56, 9195–9202.
(38) Caruso, T.; Spinella, A. Cs2CO3 promoted coupling reactions for
the preparation of skipped diynes. Tetrahedron 2003, 59, 7787–7790.
(39) Leonard, N. J.; Neelima. 1,1,1,3,3,3-Hexafluoro-2-propanol for the
removal of the 4,4′-dimethoxytrityl protecting group from the 5′-
hydroxyl of acid-sensitive nucleosides and nucleotides. Tetrahedron
Lett. 1995, 36, 7833–7336.
(40) Bailey, W. J.; Fujiwara, E. Acetylenes. I. Mixed dihalides and
halohydrins from butynediol. J. Am. Chem. Soc. 1955, 1, 165–166.
(41) In our first attempts, there were both side products with over-reduced
double bond(s) and compounds with not-yet-reduced alkyne(s) and
they migrated with the same Rf (hampered by the presence of amine
and boron and/or nickel derivatives salts in the ethanolic reaction
mixture). Thus, unfortunately, development and completion of the
hydrogenation reaction could not be monitored by hydrogen volume
absorption measurement or TLC. We had to use a trial and error
approach to find the level of poisoning of the catalyst and reaction
time.
(11) (a) Steffens, M.; Zentner, J.; Honegger, J.; Feuerstein, T. J. Binding
affinity and agonist activity of putative endogenous cannabinoids at
the human neocortical CB1 receptor. Biochem. Pharmacol. 2005, 69,
169–178. (b) Porter, A. C.; Sauer, J. M.; Knierman, M. D.; Becker,
G. W.; Berna, M. J.; Bao, J.; Nomikos, G. G.; Carter, P.; Bymaster,
F. P.; Leese, A. B.; Felder, C. C. Characterization of a novel
endocannabinoid, virodhamine, with antagonist activity at the CB1
receptor. J. Pharmacol. Exp. Ther. 2002, 301, 1020–1024.
(12) Fride, E.; Gobshtis, N. Endocannabinoids and their receptors: physiol-
ogy, pathology and pharmacology. Immunol., Endocr. Metab. Agents
Med. Chem. 2007, 7, 157–173.
(13) A full issue of the British Journal of Pharmacology (2008, 153 (2))
is dedicated to reviews and topics on the CB2 receptor, stemming
from a meeting “CB2 Receptors: New Vistas” that was held in Canada
in June 2007.
(14) (a) Liu, J.; Wang, L.; Harvey-White, J.; Huang, B. X.; Kim, H. Y.;
Luquet, S.; Palmiter, R. D.; Krystal, G.; Rai, R.; Mahadevan, A.;
Razdan, R. K.; Kunos, G. Multiple pathways involved in the
biosynthesis of anandamide. Neuropharmacology 2008, 54, 1–7. (b)
McPartland, J. M.; Norris, R. W.; Kilpatrick, C. W. Coevolution
between cannabinoid receptors and endocannabinoid ligands. Gene
2007, 397, 126–135.
(15) Demuth, D. G.; Molleman, A. Cannabinoid signalling. Life Sci. 2006,
78, 549–563.
(16) Felder, C. C.; Dickason-Chesterfield, A. K.; Moore, S. A. Cannabinoids
biology: the search for new therapeutic targets. Mol. InterVentions
2006, 6, 149–161.
(17) Smita, K.; Sushil Kumar, V.; Premendran, J. S. Anandamide: an update.
Fundam. Clin. Pharmacol. 2007, 21, 1–8.
(18) Alexander, S. P.; Kendall, D. A. The complications of promiscuity:
endocannabinoid action and metabolism. Br. J. Pharmacol. 2007, 152,
602–623.
(19) Fowler, C. J. The contribution of cyclooxygenase-2 to endocannabinoid
metabolism and action. Br. J. Pharmacol. 2007, 152, 594–601.
(20) Brown, A. J. Novel cannabinoid receptors. Br. J. Pharmacol. 2007,
152, 567–575.
(21) Di Marzo, V.; De Petrocellis, L. Non-CB1 Non CB2 Receptors for
Endocannabinoids. In Endocannabinoids: The Brain and Body’s
Marijuana and Beyond; Onaivi, E. S., Sugiura, T., Di Marzo, V., Eds.;
Taylor & Francis: Boca Raton, FL, 2006; Vol. 15, pp 1-174.
(22) Begg, M.; Pacher, P.; Batkai, S.; Osei-Hyiaman, D.; Offertaler, L.;
Mo, F. M.; Liu, J.; Kunos, G. Evidence for novel cannabinoid
receptors. Pharmacol. Ther. 2005, 106, 133–145.
(23) Pertwee, R. G. Novel pharmacological targets for cannabinoids. Curr.
Neuropharmacol. 2004, 2, 9–29.
(24) Fride, E.; Foox, A.; Rosenberg, E.; Faigenboim, M.; Cohen, V.; Barda,
L.; Blau, H.; Mechoulam, R. Milk intake and survival in newborn
cannabinoid CB1 receptor knockout mice: evidence for a “CB3”
receptor. Eur. J. Pharmacol. 2003, 461, 27–34.
(25) Di Marzo, V.; De Petrocellis, L.; Fezza, F.; Ligresti, A.; Bisogno, T.
Anandamide receptors. Prostaglandins, Leukotrienes Essent. Fatty
Acids 2002, 66, 377–391.
(42) Taber, D. F.; Zhang, Z. J. A linpchin approach to unsaturatted fatty
acids 11,12-epoxyeicosatrienoic acid and 11S,12S-dihydroxyeicosa-
trienoic acid ethyl esters. Org. Chem. 2005, 70, 8093–8095.
(43) (a) Colonge, J.; Poilane, G. Utilisation du chloro-4 bute`ne-2 ol-1
en synthe`se organiqueaction sur les compose´ organomanesiens. Bull.
Soc. Chim. Fr. 1955, 953, 955. (b) Imai, T.; Nishida, S. A mild and
convenient Barbier-type allylation od aldehyddes to homoallylic