A R T I C L E S
Lin et al.
of extended networks assembled by the bonding of metal ions
and polyfunctional organic ligands. The development of syn-
thesis Via design over the past decade has produced examples
of metal-organic frameworks showing high porosity and
capability of adsorbing significant amounts of gases and small
molecules.24-42 These materials have been under intense
scrutiny due to their potential for high H2 adsorption capacity
and opportunities to tune and modify framework structures to
improve the properties of the resultant materials.
Physisorption of H2 in porous materials usually operates at
77 K due to the low adsorption heat for the process (typically
5-8 kJ mol-1 14,18,43-47). A higher isosteric heat of adsorption
of ∼15-20 kJ mol-1 is required for a H2 storage system
operating at room temperature and at a pressure range of 1.5-20
bar suitable for delivery directly to a fuel cell.48 Strategies to
enhance the H2 binding energy in porous materials include the
formation of narrow pores such that the overlapping potential
from two or more walls increases the binding energy between
H2 and the framework,47,49 provision of free metal coordination
sites to allow stronger binding of H2 directly to metal
nodes,14,20,46,50 and doping of frameworks with metal centers
and particles to increase H2 uptake Via a spillover mechanism.51
There is limited evidence that exposed metal sites increase the
overall H2 uptake capacities of porous metal-organic frame-
works, although binding enthalpies may well be increased by
direct interactions between H2 and metal centers.50,52-54 We
report here a comprehensive investigation of Cu(II) paddlewheel
complexes formed from a range of polyphenyl tetracarboxylate
ligands to yield materials with pore sizes ranging from 6.5 to
8.3 Å, the pore size being controlled and tuned by the
polyaromatic backbone.20 A range of different ligand spacers
(Scheme 1) has been introduced, and a series of new materials
with various pore sizes and shapes are obtained with different
functional groups projecting into the pores. Extensive charac-
terization of H2 adsorption in NOTT-101 was performed using
neutron powder diffraction, while detailed analysis of the H2
adsorption enthalpies for the series of porous complexes revealed
correlations between the exposed Cu(II) sites, organic ligands,
and the overall framework structures.
(8) Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am.
Chem. Soc. 2004, 126, 5666–5667.
(9) Chen, B.; Ockwig, N. W.; Millward, A. R.; Contreras, D. S.; Yaghi,
O. M. Angew. Chem., Int. Ed. 2005, 44, 4745–4749.
(10) Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005,
127, 14904–14910.
(11) Furukawa, H.; Miller, M. A.; Yaghi, O. M. J. Mater. Chem. 2007,
17, 3197–3204.
(12) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc.
2006, 128, 3494–3495.
(13) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe,
M.; Yaghi, O. M. Science 2003, 300, 1127–1129.
(14) Dinca˘, M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 11172–11176.
(15) Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc.
2007, 129, 14176–14177.
Experimental Section
(16) Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long,
J. R. J. Am. Chem. Soc. 2006, 128, 16876–16883.
All chemical reagents and gases were obtained from commercial
sources and, unless otherwise noted, were used without further
purification.
Ligand Synthesis. Preparation of Benzene-1,3-dicarboxy-
ethylester-5-boronic Acid. 1,3-Dimethyl-5-bromobenzene (100.0
g, 0.54 mol) in Et2O (800 mL) was added slowly over 2 h to Mg
(17) Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.; Bockrath, B. C.;
Lin, W. Angew. Chem., Int. Ed. 2005, 44, 72–75.
(18) Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. C.;
Luebke, R.; Eddaoudi, M. Angew. Chem., Int. Ed. 2007, 46, 3278–
3283.
(19) Zhao, X.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.;
Rosseinsky, M. J. Science 2004, 306, 1012–1015.
(20) Lin, X.; Jia, J.; Zhao, X.; Thomas, K. M.; Blake, A. J.; Walker, G. S.;
Champness, N. R.; Hubberstey, P.; Schro¨der, M. Angew. Chem., Int.
Ed. 2006, 45, 7358–7364.
(38) Llewellyn, P. L.; Bourrrelly, S.; Serre, C.; Filinchuk, Y.; Fe´rey, G.
Angew. Chem., Int. Ed. 2006, 45, 7751–7754.
(39) Wang, X.-S.; Ma, S.; Forster, P. M.; Yuan, D.; Eckert, J.; Lopez, J. L.;
Murphy, B. J.; Parise, J. B.; Zhou, H.-C. Angew. Chem., Int. Ed. 2008,
47, 7263–7266.
(21) Jia, J.; Lin, X.; Wilson, C.; Blake, A. J.; Champness, N. R.; Hubberstey,
P.; Walker, G.; Cussen, E. J.; Schro¨der, M. Chem. Commun. 2007,
840–842.
(40) Lee, Y.-G.; Moon, H. R.; Cheon, Y. E.; Suh, M. P. Angew. Chem.,
Int. Ed. 2008, 47, 7741–7745.
(22) Lin, X.; Jia, J.; Hubberstey, P.; Schro¨der, M.; Champness, N. R.
CrystEngComm 2007, 9, 438–448.
(41) Wang, X.-S.; Ma, S.; Rauch, K.; Simmons, J. M.; Yuan, D.; Wang,
X.; Yildirim, T.; Cole, W. C.; Lopez, J. J.; Meijere, A.; Zhou, H.-C.
Chem. Mater. 2008, 20, 3145–3152.
(23) Fe´rey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percheron-
Guegan, A. Chem. Commun. 2003, 2976–2977.
(24) Fe´rey, G. Science 2005, 310, 1119–1119.
(42) Xue, M.; Zhu, G.; Li, Y.; Zhao, X.; Jin, Z; Kang, E.; Qiu, S. Cryst.
Growth Des. 2008, 8, 2478–2483.
(25) Noro, S.-I; Kitagawa, S.; Kondo, M.; Seki, K. Angew. Chem., Int.
Ed. 2000, 39, 2082–2084.
(43) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 1304–
1315.
(26) Chen, B.; Eddaoudi, M.; Hyde, S. T.; O‘Keeffe, M.; Yaghi, O. M.
Science 2001, 291, 1021–1023.
(44) Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 6506–6507.
(45) Dinca˘, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376–9377.
(46) Dinca˘, M.; Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R.
Angew. Chem., Int. Ed. 2007, 46, 1419–1422.
(27) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe,
M.; Yaghi, O. M. Science 2002, 295, 469–472.
(28) Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem., Int.
Ed. 2003, 42, 428–431.
(47) Yang, W.; Lin, X.; Jia, J.; Blake, A. J.; Wilson, C.; Hubberstey, P.;
Champness, N. R.; Schr¨oder, M. Chem. Commun. 2008, 359–361. Liu,
Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C. Langmuir
2008, 24, 4772–77.
(29) Dueren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Langmuir 2004,
20, 2683–2689.
(30) Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.;
Fe´rey, G. J. Am. Chem. Soc. 2005, 127, 13519–13521.
(31) Ma, S.; Sun, D.; Wang, X.-S.; Zhou, H.-C. Angew. Chem., Int. Ed.
2007, 46, 2458–2462.
(48) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688–1700.
(49) Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem.sEur. J. 2005,
11, 3521–3529.
(32) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.;
O‘Keeffe, M.; Yaghi, O. M. Science 2008, 319, 939–943.
(33) Fletcher, A. J.; Cussen, E. J.; Bradshaw, D.; Rosseinsky, M. J.; Thomas,
K. M. J. Am. Chem. Soc. 2004, 126, 9750–9759.
(50) Dinca˘, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long,
J. R. J. Am. Chem. Soc. 2006, 128, 16876–83.
(51) Li, Y.; Yang, R. T. J. Am. Chem. Soc. 2006, 128, 726–727. See
also: Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604–
9605.
(34) Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am.
Chem. Soc. 2002, 124, 9574–9581.
(52) Liu, Y.; Brown, C. M.; Neumann, D. A.; Peterson, V. K.; Kepert,
C. J. J. Alloys Compd. 2007, 446, 385–388.
(35) Fletcher, A. J.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J.; Kepert,
C. J.; Thomas, K. M. J. Am. Chem. Soc. 2001, 123, 10001–10011.
(36) Lin, X.; Blake, A. J.; Wilson, C.; Sun, X. Z.; Champness, N. R.;
George, M. W.; Hubberstey, P.; Mokaya, R.; Schro¨der, M. J. Am.
Chem. Soc. 2006, 128, 10745–10753.
(53) Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.;
Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga,
S. Chem. Mater. 2006, 18, 1337–1346.
(54) Forster, P. M.; Eckert, J.; Heiken, B. D.; Parise, J. B.; Yoon, J. W.;
Jhung, S. H.; Chang, J.-S.; Cheetham, A. K. J. Am. Chem. Soc. 2006,
128, 16846–16850.
(37) Ma, S.; Sun, D.; Simmons, J. M.; Collier, C. D.; Yuan, D.; Zhou,
H.-C. J. Am. Chem. Soc. 2008, 130, 1012–1016.
9
2160 J. AM. CHEM. SOC. VOL. 131, NO. 6, 2009