984
N. Lachance et al. / Bioorg. Med. Chem. Lett. 22 (2012) 980–984
Table 3
In vitro and in vivo profiles of MK-8245, 20 and 21 in mice
Mouse SCD
IC50 (nM)
In vivo
TDa
(l
M)
mLPDb
MK-8245
3
[Liver] = 2.7
89% inh. at 2 mg/kg
[Plasma] = 0.03
[Harderian glands] = 0.13
[Liver] = 4.9
49% inh. at 0.4 mg/kg
[Liver] = 1.6
lM
lM
20
21
9
[Liver] = 21.3
[Plasma] = 0.36
[Harderian glands] = 0.51
76% inh. at 2 mg/kg
[Liver] = 23.2
lM
21
[Liver] = 9.3
[Plasma] = 0.22
61% inh. at 2 mg/kg
[Liver] = 7.7
lM
[Harderian glands] = 0.05
a
TD—tissue distribution (PO, mouse (n = 2), 10 mg/kg; 6 h post dose).
mLPD (PO, mouse (n = 5), 3 h post dose); inh.—inhibition.
b
B.; Lachance, N.; Landry, F.; Li, C. S.; Mancini, J.; Normandin, D.; Pocai, A.;
Powell, D. A.; Ramtohul, Y. K.; Skorey, K.; Sørensen, D.; Sturkenboom, W.;
Styhler, A.; Waddleton, D. M.; Wang, H.; Wong, S.; Xu, L.; Zhang, L. J. Med. Chem.
2011, 54, 5082.
In conclusion, we have identified a bispyrrolidine and a pipera-
zine series as new structural motifs for SCD inhibitors. In these ser-
ies, the piperidine core present in MK-8245, and in other common
SCD-inhibitors,8 is replaced by moderately rigid heterocycles con-
necting the thiazole or isoxazole ring with the phenyl ring via a C–
N bond. SAR around the bispyrrolidine core led to the identification
of the thiazole heterocycle and the 2-chloro-5-trifluoromethoxy-
phenyl in 20, as an excellent combination for both in vitro potency
and in vivo efficacy. Presently, the exploration of the bispyrrolidine
series is suspended but any future work will need to focus on
improving mLPD activity in this series by increasing in vitro inhib-
itory activity for Rat SCD and Rat Hep assays, and to evaluate the
therapeutic profile in a 4-week chronic dosing model.
6. Mouse liver pharmacodynamic model (mLPD) is expressed in percentage (%)
inhibition and is used to assess the in vivo potency. In the mLPD experiment,
mice were fed on a high carbohydrate diet and the SCD activity was indexed 3 h
post oral dose of SCD inhibitors by following the conversion of intravenously
administered [1-14C]-stearic acid tracer to the SCD-derived [1-14C]-oleic acid in
liver lipids. The percentage (%) of inhibition of an SCD inhibitor is calculated
from the liver SCD activity index (ratio of 14C-oleic acid/14C-stearic acid) from
drug treated animals compared to a vehicle group.
7. Lachance, N.; Guiral, S.; Huang, Z.; Leclerc, J.-P.; Li, C. S.; Oballa, R. M.;
Ramtohul, Y. K.; Wang, H.; Wu, J.; Zhang, L. Bioorg. Med. Chem. Lett. 2011.
8. Leading references: (a) Zhao, H.; Serby, M. D.; Smith, H. T.; Cao, N.; Suhar, T. S.;
Surowy, T. K.; Camp, H. S.; Collins, C. A.; Sham, H. L.; Liu, G. Bioorg. Med. Chem.
Lett. 2007, 17, 3388; (b) Liu, G.; Lynch, J. K.; Freeman, J.; Liu, B.; Xin, Z.; Zhao, H.;
Serby, M. D.; Kym, P. R.; Suhar, T. S.; Smith, H. T.; Cao, N.; Yang, R.; Janis, R. S.;
Krauser, J. A.; Cepa, S. P.; Beno, D. W. A.; Sham, H. L.; Collins, C. A.; Surowy, T. K.;
Camp, H. S. J. Med. Chem. 2007, 50, 3086.
Acknowledgments
9. Detailed experimental procedures: Lachance, N.; Leger, S.; Oballa, R. M.; Powell,
D.; Tranmer, G. K.; Martins, E.; Gareau, Y. WO 2010/108268 and references
cited therein.
The authors thank Dan Sørensen for NMR spectroscopic assis-
tance on gHMBC, 15N gHMBC and 1D NOESY experiments.
10. (a) During the course of this study, three separate patent applications
describing new systemically-distributed SCD inhibitors containing bicyclic
heterocycles tether were published: Zoller, G.; Voss, M. D.; Matter, H.; Herling,
A. WO 2010/028761.; (b) Chaudhari, S. S.; Thomas, A.; Gudade, G. B.; Kadam,
A.; Patil, N. P.; Khairatkar-Joshi, N.; Shah, D. M. WO 2009/037542.; (c) Zoller,
G.; Voss, M. D.; Keil, S.; Herling, A.; Matter, H. WO 2008/135141.
11. Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1144 and references cited
therein.
12. Girardin, M.; Alsabeh, P. G.; Lauzon, S.; Dolman, S. J.; Ouellet, S. G.; Hughes, G.
Org. Lett. 2009, 11, 1159.
13. The regiochemistry of the acetic acid side chain on the tetrazole was confirmed
by evaluation of the structures through NMR experiments: gHMBC, 15N gHMBC
and 1D NOESY.
14. Rat microsomal assay conditions: Li, C. S.; Ramtohul, Y.; Huang, Z.; Lachance, N.
WO 2006/130986.
15. Zhang, L.; Ramtohul, Y.; Gagné, S.; Styhler, A.; Guay, J.; Huang, Z. J. Biomol.
Screen. 2010, 15, 169.
16. Compounds containing a six-membered heterocycle ring pyrimidine were less
potent. Data unpublished.
17. Powell, D. A.; Ramtohul, Y.; Lebrun, M.-E.; Oballa, R.; Bhat, S.; Falgueyret, J.-P.;
Guiral, S.; Huang, Z.; Skorey, K.; Tawa, P.; Zhang, L. Bioorg. Med. Chem. Lett.
2010, 20, 6366.
18. Several substituents (F, Cl, Br, Me, CF3, SO2Me, OMe, OEt, OCH2Cyp, Ph) were
evaluated across numerous combination at the ortho, meta and para positions
on the phenyl ring. Unpublished results.
19. The available or free drug concentration in the liver homogenate was not
measured for compounds 20 and 21. Total drug concentration presented in
Table 3 supports the efficacy of MK-8245, 20 and 21 in mLPD.
20. MK-8245, 20, 21 were tested in three separate mLPD experiments; n = 5 mice
per group. A difference (10–15%) of inhibitory activity from 61% to 76% or from
76% to 89% in the mLPD is not statistically significant.
References and notes
1. Reviews: (a) Dobrzyn, P.; Dobrzyn, A. Expert Opin. Ther. Patents 2010, 20, 849
and references cited therein; (b) Liu, G. Expert Opin. Ther. Patents 2009, 19, 1169
and references cited therein.
2. Leading references: (Mice AEs): (a) Leger, S.; Black, C.; Deschenes, D.; Dolman,
S.; Falgueyret, J.-P.; Gagnon, M.; Guiral, S.; Huang, Z.; Guay, J.; Leblanc, Y.; Li, C.-
S.; Masse, F.; Oballa, R.; Zhang, L. Bioorg. Med. Chem. Lett. 2010, 20, 499; (b)
Ramtohul, Y. K.; Black, C.; Chan, C.-C.; Crane, S.; Guay, J.; Guiral, S.; Huang, Z.;
Oballa, R.; Xu, L.-J.; Zhang, L.; Li, C. S. Bioorg. Med. Chem. Lett. 2010, 20, 1593; (c)
Li, C. S.; Belair, L.; Guay, J.; Murgasva, R.; Sturkenboom, W.; Ramtohul, Y. K.;
Zhang, L.; Huang, Z. Bioorg. Med. Chem. Lett. 2009, 19, 5214. (Rats AEs): (d)
Atkinson, K. A.; Beretta, E. E.; Brown, J. A.; Castrodad, M.; Chen, Y.; Cosgrove, J.
M.; Du, P.; Litchfield, J.; Makowski, M.; Martin, K.; McLellan, T. J.; Neagu, C.;
Perry, D. A.; Piotrowski, D. W.; Steppan, C. M.; Trilles, R. Bioorg. Med. Chem. Lett.
2011, 21, 1621.
3. (a) Ramtohul, Y. K.; Powell, D.; Leclerc, J.-P.; Leger, S.; Oballa, R.; Black, C.;
Isabel, E.; Li, C. S.; Crane, S.; Robichaud, J.; Guay, J.; Guiral, S.; Zhang, L.; Huang,
Z. Bioorg. Med. Chem. Lett. 2011, 21, 5692; (b) Uto, Y.; Ueno, Y.; Kiyotsuka, Y.;
Miyazawa, Y.; Kurata, H.; Ogata, T.; Yamada, M.; Deguchi, T.; Konishi, M.;
Takagi, T.; Wakimoto, S.; Ohsumi, J. Eur. J. Med. Chem. 2010, 45, 4788 and
references cited therein; (c) Uto, Y.; Ogata, T.; Kiyotsuka, Y.; Ueno, Y.;
Miyazawa, Y.; Kurata, H.; Deguchi, T.; Watanabe, N.; Konishi, M.; Okuyama,
R.; Kurikawa, N.; Takagi, T.; Wakimoto, S.; Ohsumi, J. Bioorg. Med. Chem. Lett.
2010, 20, 341; (d) Koltun, D. O.; Vasilevich, N. I.; Parkhill, E. Q.; Glushkov, A. I.;
Zilbershtein, T. M.; Mayboroda, E. I.; Boze, M. A.; Cole, A. G.; Henderson, I.;
Zautke, N. A.; Brunn, S. A.; Chu, N.; Hao, J.; Mollova, N.; Leung, K.; Chisholm, J.
W.; Zablocki, J. Bioorg. Med. Chem. Lett. 2009, 19, 3050 and references cited
therein.
4. Review on OATPs: Niemi, M. Pharmacogenomics 2007, 8, 787.
5. Oballa, R. M.; Belair, L.; Black, W. C.; Bleasby, K.; Chan, C. C.; Desroches, C.; Du,
X.; Gordon, R.; Guay, J.; Guiral, S.; Hafey, M. J.; Hamelin, E.; Huang, Z.; Kennedy,