as C-4 oxygenated, C-4 halogenated, and C-4 azido tetrahy-
dropyran.7 The 4-aryltetrahydropyrans are core units of many
naturally occurring biologically active compounds.8,2h There are
few methods for the synthesis of 4-aryltetrahydropyran. Li et
al.8d have reported the synthesis of 2,4-diaryltetrahydropyran
by a three-component Prins-Friedel-Crafts reaction, but it
suffers a major drawback. The method is limited to aromatic
nucleophiles having a methoxy group. Rychnovsky and his
group applied Prins reaction to 4-allyl-1,3-dioxanes2i and allyl
R-acetoxy ether2h for the synthesis of the 4-aryltetrahydropyran
unit. Recently we have developed methodologies for the
synthesis of symmetric 2,4-disubstituted-4-amido-9 and -4-
aryltetrahydropyran10 by Sakurai-Hosomi-Prins-Ritter and
Sakurai-Hosomi-Prins-Friedel-Crafts reaction, respectively.
Although the Sakurai-Hosomi-Prins-Friedel-Crafts reaction
provides symmetrical 4-aryltetrahydropyran with excellent ster-
eochemistry it fails to afford unsymmetrical 2,6-disubstituted-
4-aryltetrahydropyran. Here we wish to report an efficient
method for the synthesis of unsymmetrical 2,6-disubstituted-
4-aryltetrahydropyran from carbonyl compound, homoallyl
alcohol, and arene mediated by boron trifluoride etherate in
excellent yield and stereoselectivity.
Stereoselective One-Pot, Three-Component
Synthesis of 4-Aryltetrahydropyran via
Prins-Friedel-Crafts Reaction
U. C. Reddy, S. Bondalapati, and Anil K. Saikia*
Department of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, India
ReceiVed NoVember 14, 2008
A diastereoselective one-pot, three-component Prins-
Friedel-Crafts reaction was developed for the synthesis of
4-aryltetrahydropyran derivatives from the reaction of car-
bonyl compounds with homoallylic alcohol in the presence
of arene promoted by boron trifluoride etherate.
Initially benzaldehyde was reacted with homoallyl alcohol
in the presence of boron trifluoride etherate in benzene at rt.
The product 2,4-diphenyltetrahydropyran was obtained with
75% yield in 6 h. The reaction is stereoselective and both
substituents are in the equatorial position. The reaction can be
generalized as shown in Scheme 1.
Multicomponent reactions are important in organic synthesis
due to their ability to form multiple bonds in a single step.1
Tetrahydropyran unit is found in many biologically active
natural products.2 These are prepared by hetero-Diels-Alder
methods,3 manipulations of carbohydrates,4 intramolecular
Michael reactions,5 and other methods.6 Prins reaction has long
been used for the synthesis of 4-substituted tetrahydropyran such
To prove its general applicability, aliphatic, aromatic, unsat-
urated, and heterocyclic aldehydes were examined and it was
found that all types of aldehydes give good yields with high
stereoselectivity (Table 1).
(5) (a) Clarke, P. A.; Santos, S.; Martin, W. H. C. Green Chem. 2007, 9,
438. (b) Clarke, P. A.; Martin, W. H. C.; Hargreaves, M. J.; Wilson, C.; Blake,
A. J. Org. Biomol. Chem. 2005, 3, 3551. (c) Little, R. D.; Masjedizadeh, M. R.;
Wallquist, O.; McLoughlin, J. I. Org. React. 1995, 47, 661.
(1) (a) Tietze, L. F.; Beifus, U. Angew. Chem., Int. Ed. 1993, 32, 131. (b)
Tietze, L. F. Chem. ReV. 1996, 96, 115. (c) Khan, A. T.; Choudhury, L. H.;
Parvin, T.; Ali, M. A. Tetrahedron Lett. 2006, 47, 8137.
(6) (a) Bo¨hrsh, V.; Blechert, S. Chem. Commun. 2006, 1968. (b) Prasad,
K. R.; Anbarasan, P. Tetrahedron 2007, 63, 1089. (c) Avery, T. D.; Caiazza,
D.; Culbert, J. A.; Taylor, D. K.; Tiekink, R. T. J. Org. Chem. 2005, 70, 8344.
(7) (a) Crosby, S. R.; Harding, J. R.; King, C. D.; Parker, G. D.; Willis,
C. L. Org. Lett. 2002, 4, 577. (b) Hu, Y.; Skalitzky, D. J.; Rychnovsky, S. D.
Tetrahedron Lett. 1996, 37, 8679. (c) Hiebel, M.-A.; Pelotier, B.; Piva, O.
Tetrahedron 2007, 63, 7874. (d) Barry, C. S.; Bushby, N.; Harding, J. R.; Hughes,
R. A.; Parker, G. D.; Roe, R.; Willis, C. L. Chem. Commun. 2005, 3727. (e)
Yadav, J. S.; Reddy, B. V. S.; Maity, T.; Kumar, G. G. K. S. Tetrahedron Lett.
2007, 48, 8874. (f) Yadav, J. S.; Reddy, B. V. S.; Maity, T.; Kumar, G. G. K. S.
Tetrahedron Lett. 2007, 48, 7155. (g) Chan, K.-P.; Seow, A.-H.; Loh, T.-P.
Tetrahedron Lett. 2007, 48, 37. (h) Yadav, J. S.; Reddy, B. V. S.; Kumar,
G. G. K. S. N.; Swamy, T. Tetrahedron Lett. 2007, 48, 2205. (i) Yadav, J. S.;
Reddy, B. V. S.; Kumar, G. M.; Murthy, C. V. S. R. Tetrahedron Lett. 2001,
42, 89. (j) Li, C.-J.; Zhang, W.-C. Tetrahedron 2000, 56, 2406. (k) Zhang, W.-
C.; Viswanathan, G. S.; Li, C.-J. Chem. Commun. 1999, 291.
(8) (a) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.;
Dong, H.; Kadota, S. Org. Lett. 1999, 01, 1733. (b) Tezuka, Y.; Gewali, M. B.;
Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208. (c) Kadota,
S.; Tezuka, Y.; Prasain, J. K.; Ali, M. S.; Banskota, A. H. Curr. Top. Med.
Chem. 2003, 03, 203. (d) Yang, X.-F.; Wang, M.; Zhang, Y.; Li, C.-J. Synlett
2005, 1912. (e) Brown, E.; Bijardin, G.; Maudet, M. Tetrahedron 1997, 53,
9679. (f) Nagasaki, T.; Yasuda, S.; Imai, T. Phytochemistry 2001, 58, 833.
(9) Reddy, U. C.; Raju, B. R.; Kumar, E. K. P.; Saikia, A. K. J. Org. Chem.
2008, 73, 1628.
(2) (a) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045, and references
cited therein. (b) Perron, F.; Albizati, K. F. J. Org. Chem. 1987, 52, 4130. (c)
Class, Y. J.; DeShong, P. Chem. ReV. 1995, 95, 1843. (d) Kopecky, D. J.;
Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123, 8420. (e) Wang, Y.; Janjic, J.;
Kozmin, S. A. J. Am. Chem. Soc. 2002, 124, 13670. (f) Aubele, D. L.; Wan, S.;
Floreancig, P. E. Angew. Chem., Int. Ed. 2005, 44, 3485. (g) Bahnck, K. B.;
Rychnovsky, S. D. Chem. Commun. 2006, 2388. (h) Tian, X. T.; Jaber, J. J.;
Rychnovsky, S. D. J. Org. Chem. 2006, 71, 3176. (i) Hu, Y.; Skalitzky, D. J.;
Rychnovsky, S. D. Tetrahedron Lett. 1996, 37, 8679.
(3) (a) Boger, D. L.; Weinerb, S. M. Hetero Diels-Alder Methodology in
Organic Synthesis; Academic Press: San Diego, CA, 1987. (b) Gademann, K.;
Chavez, D. E.; Jacobson, E. N. Angew. Chem., Int. Ed. 2002, 41, 3059. (c)
Gouverneur, V.; Reiter, M. Chem. Eur. J. 2005, 11, 5806. (d) Gademann, K.;
Chavez, D. E.; Jacobson, E. N. Angew. Chem., Int. Ed. 2005, 44, 3485. (e)
Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem. Eur. J. 2007, 13,
9478. (f) Paterson, I.; Steven, A.; Luckhurst, C. A. Org. Biomol. Chem. 2004,
2, 3026. (g) Liu, P.; Jacobson, E. N. J. Am. Chem. Soc. 2001, 123, 10772. (h)
Voight, E. A.; Seradj, H.; Roethle, P. A.; Burke, S. D. Org. Lett. 2004, 6, 4045.
(i) Ruijter, E. R.; Schltingkemper, H.; Wessjohann, L. A. J. Org. Chem. 2005,
70, 2820.
(4) (a) Hanessian, S. Total Synthesis of Natural products: The Chiron
Approach; Baldwin, J. E., Eds.; Pergamon: Oxford, UK, 1983. (b) Esteveza,
J. C.; Fairbanks, A. J.; Fleet, G. W. J. Tetrahedron 1998, 54, 13591. (c) Osborn,
H. M. I.; Gemmel, N.; Harwood, L. M. J. Chem. Soc., Perkin Trans. 1 2002,
2419. (d) Shing, T. K. M.; Fung, W.-C.; Wong, C.-H. J. Chem. Soc., Chem.
Commun. 1994, 449. (e) Bhattacharjee, A.; Bhattacharjya, A.; Patra, A.
Tetrahedron Lett. 1995, 36, 4677.
(10) The reaction of aldehyde with allylsilane in arene gives symmetrical
2,6-disubstituted-4-aryltetrahydropyran in good yields. The reaction is highly
stereoselective. Unpublished work.
10.1021/jo802531h CCC: $40.75
Published on Web 02/13/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2605–2608 2605