1178
S. Pe´rez-Rentero et al. / Tetrahedron 65 (2009) 1171–1179
and after the guanidine formation, the phosphate stretch was as-
sembled using the standard phosphoramidite methodology. For the
synthesis of 23b, 50-MMT-amino-50-deoxythymidine 30-phosphor-
amidite21 was incorporated during the oligonucleotide synthesis in
the same conditions than the rest of phosphoramidites. Then, the
coupling of morpholinocarbothioamide 7 was performed as de-
scribed for the synthesis of guanidine 14a. Once the guanidine was
formed, the resin was returned to the synthesizer and the 50
phosphate stretch was assembled using the standard protocol. Ol-
igonucleotides 24–27 were finally deprotected and cleaved from
the resin by treatment with aq concd ammonia at 60 ꢀC (6–12 h),
and purified as explained below. Oligonucleotides 18b and 23b
were deprotected by a two-step procedure. In the first place, the
Supplementary data
1H and 13C NMR spectra and mass spectra of morpholino-uri-
dine 6 and morpholino-uridine carbothioamide 7, and UV melting
profiles of duplexes and triplexes summarized in Tables 3 and 4.
Supplementary data associated with this article can be found in the
References and notes
1. (a) Crooke, S. T. Ann. Rev. Med. 2004, 55, 61–95; (b) Kurreck, J. In Therapeutic
Oligonucleotides; Kurreck, J., Ed.; Royal Society of Chemistry: Cambridge, 2008;
pp 1–22; (c) Tachikawa, K.; Briggs, S. P. Curr. Opin. Biotechnol. 2006, 17, 659–665;
(d) Dubertert, B. Nat. Mater. 2005, 4, 797–798; (e) Seeman, N. C. Nature 2003,
421, 427–431.
2. (a) Wilson, C.; Keefe, A. D. Curr. Opin. Chem. Biol. 2006, 10, 607–614; (b) Bum-
crot, D.; Manoharan, M.; Koteliansky, V.; Sah, D. W. Y. Nat. Chem. Biol. 2006, 2,
711–719.
oligonucleotide resin (1
was submitted under argon to three treatments with 250
1.2 M dimethyl malonate and 250 L of 0.02 M Pd(PPh3)4 in anhy-
mmol) was placed into a fritted syringe and
mL of
m
drous THF for 1 h. To produce the complete deprotection and the
cleavage of the resin, the resin was placed into a vial, and treated
with aq concd ammonia at 60 ꢀC for 6 h. DMT–oligonucleotides
were purified by reversed-phase HPLC (Hamilton PRP, linear gra-
dients 10–50 or 60% B in 30 min). The collected fractions were
lyophylized and treated with AcOH/H2O 4:1 (15 min, 0 ꢀC) to pro-
duce the removal of DMT and lyophylized. Oligonucleotides 18b
and 23b needed to be repurified by reversed-phase HPLC (Hamilton
PRP, linear gradients 10–30% B in 30 min). Oligonucleotides were
quantified by UV absorption at 260 nm. 3260 values calculated by
the nearest-neighbor method.
Oligonucleotide 18b: 13% yield. Reversed-phase HPLC (Kromasil-
C18, linear gradient 10–30% B in 30 min, solvent A: 0.05 M AcONH4,
solvent B CH3CN/water 1:1) tR: 17.8 min. MALDI-TOF MS m/z
(negative mode, THAP-CA, [MꢁH]ꢁ) calcd for C136H182N35O88P12
4085.8, found 4082.7.
3. (a) Fraley, A. W.; Pons, B.; Dalkara, D.; Nullans, G.; Behr, J.-P.; Zuber, G. J. Am.
Chem. Soc. 2006, 128, 10763–10771; (b) Zatsepin, T. S.; Turner, J. J.; Oretskaya, T.
S.; Gait, M. J. Curr. Pharm. Design 2005, 11, 3639–3654.
4. (a) Ohmichi, T.; Kuwahara, M.; Sasaki, N.; Hasegawa, M.; Nishikata, T.; Sawai,
H.; Sugimoto, N. Angew. Chem., Int. Ed. 2005, 44, 6682–6685; (b) Deglane, G.;
´
Abes, S.; Michel, T.; Prevot, P.; Vives, E.; Debart, F.; Barvik, I.; Lebleu, B.; Vasseur,
J.-J. ChemBioChem 2006, 7, 684–692; (c) Prakash, T. P.; Pu¨schl, A.; Lesnik, E.;
Mohan, V.; Tereshko, V.; Egli, M.; Manoharan, M. Org. Lett. 2004, 6, 1971–1974.
5. Dempcy, R. O.; Almarsson, O.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
7864–7868.
6. (a) Dempcy, R. O.; Browne, K. A.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
6097–6101; (b) Dempcy, R. O.; Luo, J.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A.
1996, 93, 4326–4330; (c) Linkletter, B. A.; Bruice, T. C. Bioorg. Med. Chem. Lett.
1998, 8, 1285–1290; (d) Barawkar, D. A.; Linkletter, B.; Bruice, T. C. Bioorg. Med.
Chem. Lett. 1998, 8, 1517–1520; (e) Kojima, N.; Bruice, T. C. Org. Lett. 2000, 2, 81–
84; (f) Linkletter, B. A.; Szabo, I. E.; Bruice, T. C. Nucleic Acids Res. 2001, 29, 2370–
2376; (g) Reddy, P. M.; Bruice, T. C. Bioorg. Med. Chem. Lett. 2003, 13, 1281–1285;
(h) Challa, H.; Bruice, T. C. Bioorg. Med. Chem. 2004, 12, 1475–1481; (i) Jain, M. L.;
Bruice, T. C. Bioorg. Med. Chem. 2006, 14, 7333–7346.
7. (a) Browne, K. A.; Dempcy, R. O.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 1995, 92,
7051–7055; (b) Blasko´ , A.; Dempcy, R. O.; Minyat, E. E.; Bruice, T. C. J. Am. Chem.
Soc. 1996, 118, 7892–7899; (c) Blasko´, A.; Minyat, E. E.; Dempcy, R. O.; Bruice, T.
C. Biochemistry 1997, 36, 7821–7831; (d) Barawkar, D. A.; Bruice, T. C. Proc. Natl.
Acad. Sci. U.S.A. 1998, 95, 11047–11052; (e) Linkletter, B. A.; Szabo, I. E.; Bruice, T.
C. J. Am. Chem. Soc. 1999, 121, 3888–3896; (f) Szabo, I. E.; Bruice, T. C. Bioorg.
Med. Chem. 2004, 12, 4233–4244; (g) Park, M.; Bruice, T. C. Bioorg. Med. Chem.
Lett. 2005, 15, 3247–3251; (h) Toporowski, J. W.; Reddy, S. Y.; Bruice, T. C. Bioorg.
Med. Chem. 2005, 13, 3691–3698; (i) Park, M.; Toporowski, J. W.; Bruice, T. C.
Bioorg. Med. Chem. 2006, 14, 1743–1749; (j) Toporowski, J. W.; Reddy, S. Y.;
Bruice, T. C. Biophys. Chem. 2007, 126, 132–139.
Oligonucleotide 23b: 10% yield. Reversed-phase HPLC (Kromasil-
C18, linear gradient 10–30% B in 30 min, solvent A: 0.05 M AcONH4,
solvent B CH3CN/water 1:1) tR: 17.1 min. MALDI-TOF MS m/z
(negative mode, THAP-CA, [MꢁH]ꢁ) calcd for C136H182N35O88P12
4085.8, found 4084.2.
4.4. UV melting curves
8. (a) Park, M.; Canzio, D.; Bruice, T. C. Bioorg. Med. Chem. Lett. 2008, 18, 2377–
2384; (b) Park, M.; Bruice, T. C. Bioorg. Med. Chem. Lett. 2008, 18, 3488–3491; (c)
Zhang, X.; Bruice, T. C. Bioorg. Med. Chem. Lett. 2008, 18, 665–669.
9. (a) Summerton, J.; Weller, D. Antisense Nucleic Acid Drug Dev. 1997, 7, 187–195;
(b) Summerton, J. Biochim. Biophys. Acta 1999, 1489, 141–158.
10. Dore, L. C.; Amigo, J. D.; dos Santos, C. O.; Zhang, Z.; Gai, X.; Tobias, J. W.; Yu, D.;
Klein, A. M.; Dorman, C.; Wu, W.; Hardison, R. C.; Paw, B. H.; Weiss, M. J. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 3333–3338.
11. Fletcher, S.; Honeyman, K.; Fall, A. M.; Harding, P. L.; Johnsen, R. D.; Steinhaus, J.
P.; Moulton, H. M.; Iversen, P. L.; Wilton, S. D. Mol. Ther. 2007, 15, 1587–1592.
12. Corey, D. R.; Abrams, J. M. Genome Biol. 2001, 2, 1–3.
13. (a) Moulton, H. M.; Hase, M. C.; Smith, K. M.; Iversen, P. L. Antisense Nucleic Acid
Drug Dev. 2003, 13, 31–43; (b) Wu, R. P.; Youngblood, D. S.; Hassinger, J. N.;
Lovejoy, C. E.; Nelson, M. H.; Iversen, P. L.; Moulton, H. M. Nucleic Acids Res.
2007, 35, 5182–5191.
14. (a) Moulton, H. M.; Nelson, M. H.; Hatlevig, S. A.; Reddy, M. T.; Iversen, P. L.
Bioconjugate Chem. 2004, 15, 290–299; (b) Nelson, M. H.; Stein, D. A.; Kroeker,
A. D.; Hatlevig, S. A.; Iversen, P. L.; Moulton, H. M. Bioconjugate Chem. 2005, 16,
959–966; (c) Youngblood, D. S.; Hatlevig, S. A.; Hassinger, J. N.; Iversen, P. L.;
Moulton, H. M. Bioconjugate Chem. 2007, 18, 50–60; (d) Amantana, A.; Moulton,
H. M.; Cate, M. L.; Reddy, M. T.; Whitehead, T.; Hassinger, J. N.; Youngblood, D.
S.; Iversen, P. L. Bioconjugate Chem. 2007, 18, 1325–1331; (e) He, J.; Liu, G.; Dou,
S.; Gupta, S.; Rusckowski, M.; Hnatowich, D. Bioconjugate Chem. 2007, 18, 983–
988.
Experiments were performed with oligonucleotides at 1.5
mM
concentration for duplexes and 1 M for triplexes, in 40 mM
m
NaH2PO4/Na2HPO4 and 140 mM NaCl buffer, with or without 1 mM
MgCl2, at pH 7.0 for duplexes, and with 1 mM MgCl2 at pH 6.0, 6.5,
or 7.0 in the case of triplexes. Samples were heated at 90 ꢀC for
5 min, allowed to cool down slowly to room temperature to induce
annealing, and then kept overnight in a refrigerator (5 ꢀC). Melting
curves were recorded by heating the samples from 5 to 90 ꢀC at
a constant rate of 0.5 ꢀC/min and monitoring the absorbance at
260 nm at a sampling rate of 6 points/min. At temperatures below
25 ꢀC, nitrogen was flushed to prevent water condensation on cu-
vettes. Tm values were determined from the maxima of the first
derivative of the curves, calculated with the Microcal Origin soft-
ware. Experiments were repeated until coincident Tm values were
obtained. The error in Tm values was estimated to be ꢃ0.5 ꢀC.
Acknowledgements
15. (a) Stirchak, E. P.; Summerton, J. E.; Weller, D. D. Nucleic Acids Res. 1989, 17,
6129–6141; (b) Summerton, J. E.; Weller, D. D. WIPO Patent 91/009033, 1991, pp
38–40.
16. Takamizawa, A.; Hirai, K.; Matsui, K. Bull. Chem. Soc. Jpn. 1963, 36, 1214–1220.
17. (a) Gothe, R.; Seyfarth, L.; Schumann, C.; Agricola, I.; Reissmann, S.; Lifferth, A.;
Birr, C.; Filatova, M. P.; Kritsky, A.; Kibirev, V. J. Prakt. Chem. 1999, 341, 369–377;
(b) Schumann, C.; Seyfarth, L.; Greiner, G.; Reissmann, S. J. Pept. Res. 2000, 55,
428–435.
This work was supported by funds from the Spanish Ministerio
´
de Educacion y Ciencia (grants BQU-2001-3693-C02-01 and CTQ-
2004-8275-C02-01) and the Generalitat de Catalunya (2005SGR-
693). S.P.-R. and J.A. acknowledge predoctoral fellowships from the
University of Barcelona (BRD program). The authors also wish to
acknowledge technical support from the Mass Spectrometry and
NMR facilities of the Scientific-Technical Services of the Universitat
de Barcelona.
18. Zapf, C. W.; Goodman, M. J. Org. Chem. 2003, 68, 10092–10097.
19. Mag, M.; Engels, J. W. Nucleic Acids Res. 1989, 17, 5973–5988.
20. Palom, Y.; Grandas, A.; Pedroso, E. Nucleosides Nucleotides 1998, 17, 1177–1182.