are also suitable precursors for the preparation of unusual
γ-amino acids such as statine and its analogues.10 The
chemistry of this unique pyrrolidinone ring has been explored
by a number of research groups.11 Because of its multifunc-
tional core, this heterocyclic system can take part in several
stereoselective transformations such as conjugate addition,12
cycloadditions,13 acyliminium ion chemistry,14 and allylic
substitutions15 (Scheme 2).
furanyl carbamate (1) to give 5-methoxypyrrol-2(5H)-one
(2), (ii) conjugate addition of a cuprate reagent to the C4
position of the heterocyclic ring, (iii) further reaction of the
resulting 2-methoxy-5-oxopyrrolidine 11 with an alkyl
lithium to furnish a ring-opened alkyl 1-methoxy-5-oxopen-
tylcarbamate 12 and (iv) cyclization with a primary amine
under microwave conditions to afford the pyrrole derivative.
The 5-methoxypyrrol-2(5H)-one required for this methodol-
ogy was readily prepared by the addition of I2 to a solution
of the furanyl carbamate 1 in aqueous acetone which
contained a 2 mol excess of NaHCO3. More than likely the
reaction proceeds Via intermediates 8 and 9 as indicated in
Scheme 3. The initially formed 2-hydroxy-5-oxo-2,5-dihy-
Scheme 2
Scheme 3
Besides some specialized methodologies,16 the majority
of synthetic approaches used for the preparation of 5-alkoxy-
pyrrol-2(5H)-ones are based on the cyclization of R,ꢀ-
unsaturated keto amides,17 amination reactions of the cor-
responding γ-lactones,18 Grignard addition to maleimide
derivatives,19 and the photosensitized oxygenation of pyr-
roles,20 diazepines21 and 2-furyl carbamates.22
dro-1H-pyrrole 10 was smoothly converted into the corre-
sponding methoxy derivative 2 by treatment with methyl
iodide and silver (I) oxide in CH2Cl2 at 25 °C. The yield of
the resulting 5-methoxypyrrol-2(5H)-one from the furanyl
carbamate is quite good (ca 85%) and the final product is
easily isolated by column chromatography on silica gel.
The conjugate addition of various cuprates to the R,ꢀ-
unsaturated lactam system of 2 proceeded in 60-92% yield
with high stereoselectivity. The 1H NMR spectra of the crude
product only showed the presence of a single trans-addition
We now describe a four-step synthesis of 2,4-disubstituted
pyrroles (3) involving (i) an oxidative rearrangement of a
(9) (a) Klaver, W. J.; Hiemstra, H.; Speckamp, W. N. J. Am. Chem.
Soc. 1989, 111, 2588. (b) Newcombe, N. J.; Ya, F.; Vijin, R. J.; Hiemstra,
H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767. (c)
Speckamp, W. N.; Newcombe, N. J.; Hiemstra, H.; Ya, F.; Vijin, R. J.;
Koot, W. J. Pure Appl. Chem. 1994, 66, 2163. (d) Casiraghi, G.; Spanu,
P.; Rassu, G.; Pinna, L.; Ulgheri, F. J. Org. Chem. 1994, 59, 2906. (e)
Griffart-Brunet, D.; Langois, N. Tetrahedron Lett. 1994, 35, 119.
(10) (a) Jouin, P.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1987, 1177.
(b) Ma, D.; Ma, J.; Ding, W.; Dai, L. Tetrahedron Asymmetry 1996, 7,
2365.
1
product in all cases. The assignment was based on the H
NMR vicinal coupling constant of H5. In a trans-lactam this
coupling is 0-1 Hz, whereas a cis-lactam has a coupling of
5-6 Hz.23 The products obtained from the cuprate additions
(11) (a) Romo, D.; Meyers, A. I. Tetrahedron 1991, 47, 9503. (b)
Meyers, A. I.; Snyder, L. J. Org. Chem. 1992, 57, 3814. (c) Farina, F.;
Martin, M. V.; Paredes, M. C. Synthesis 1973, 167. (d) Ma, S.; Xie, H.
Org. Lett. 2000, 2, 3801.
(18) (a) Shiraki, R.; Sumino, A.; Tadano, K. I.; Ogawa, S. J. Org. Chem.
1996, 61, 2845. (b) Farina, F.; Martin, M. V.; Paredes, M. C. Heterocycles
1984, 22, 1733. (c) Gill, G. B.; James, G. D.; Oates, K. V.; Pattenden, G.
J. Chem. Soc., Perkin Trans. 1 1993, 2567. (d) Kotera, M.; Roupioz, Y.;
Defrancq, E.; Bourdat, A. G.; Garcia, J.; Coulombeau, C.; Lhomme, J.
Chem.-Eur. J. 2000, 6, 4163.
(12) (a) Jimenez, M. D.; Ortega, R.; Tito, A.; Farina, F. Heterocycles
1988, 27, 173. (b) Koot, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron
Asymmetry 1993, 4, 1941.
(13) (a) Koot, W. J.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem.
1992, 57, 1059. (b) Cooper, D. M.; Grigg, R.; Hargreaves, S.; Kennewell,
P.; Redpath, J. Tetrahedron 1995, 51, 7791.
(19) Bartfeld, H. D.; Flitsch, W. Chem. Ber. 1973, 106, 1423.
(20) Lightner, D. A.; Bisacchi, G. S.; Norris, R. D. J. Am. Chem. Soc.
1976, 98, 802.
(14) Koot, W. J.; Hiemstra, H.; Speckamp, W. N. Tetrahedron Lett.
1992, 33, 7969.
(15) Cuiper, A. D.; Kellogg, R. M.; Feringa, B. L. Chem. Commun.
1998, 655.
(21) (a) Kurita, J.; Kojima, H.; Tsuchiya, T. Chem. Parm. Bull. 1986,
34, 4871. (b) Kurita, J.; Kojima, H.; Tsuchiya, T. Heterocycles 1984, 22,
721.
(16) (a) McKennis, H.; Bowman, E. R.; Quin, L. D.; Denney, R. C.
J. Chem. Soc., Perkin Trans. 1 1973, 2046. (b) Veronese, A. C.; Callegari,
R.; Basato, M.; Valle, G. J. Chem. Soc., Perkin Trans. 1 1994, 1779. (c)
Arzoumanian, H.; Jean, M.; Nuel, D.; Garcia, J. L.; Rosas, N. Organome-
tallics 1997, 16, 2726.
(22) Kakushijin, K.; Suzuki, R.; Kawaguchi, N.; Tsuboi, Y.; Furakawa,
H. Chem. Pharm. Bull. 1986, 34, 2049.
(23) Koot, W. J.; Van Ginkel, R.; Kranenburg, M.; Hiemstra, H.;
Louwrier, S.; Moolenaar, M. J.; Speckamp, W. N. Tetrahedron Lett. 1991,
32, 401.
(17) Lightner, D. A.; Low, L. K. J. Heterocycl. Chem. 1972, 9, 167.
1234
Org. Lett., Vol. 11, No. 6, 2009