Preliminary comparative rate studies revealed that the
reactivity of naphthyl imidazolylsulfonates is similar to that
of naphthyl triflates (Scheme 2). The conversion rate is
Imidazolylsulfonates are also useful intermediates for
functional group transformation of the phenol (Scheme 3).
Scheme 3
.
Hydrogenolysis and Carbonylation Reactions of
2-Naphthylimidazolylsulfonate
Scheme 2. Suzuki Cross-Coupling Reactivity Comparison:
Triflate versus Imidazylate versus Tosylate
Reduction of 2-naphthol imidazolylsulfonate was achieved
under very mild hydrogenolysis conditions to produce
naphthalene in good yield. Palladium-catalyzed carbonylation
to generate the ester also proceeded in excellent yield under
exceedingly mild conditions.10
An important added benefit to using imidazolylsulfonates
is the inherent potential for self-destruction of the cross-
coupling byproduct imidazolesulfonic acid. Recently, there
has been a greater regulatory focus on alkyl and aryl
sulfonates as potential genotoxic impurities (PGIs).11 The
byproduct of the imidazolylsulfonate cross-coupling is imi-
dazolesulfonic acid (Scheme 4).12 Unlike tosic, methane-
sulfonic, and triflic acids, imidazolesulfonic acid hydrolyzes
in the presence of water and acid to produce imidazole and
sulfuric acid, and thus the potential formation of alkyl or
aryl sulfonates from the residual sulfonic acid is eliminated.
The imidazolylsulfonate moiety is conveniently designed for
degradation under aqueous and acidic conditions.
somewhat slower: the 2-naphthyl triflate conversion was 98%
in 30 min, whereas the analogous 2-nathphyl imidazolylsul-
fonate required 2.5 h to reach full conversion. In sharp
contrast, the 2-naphthyl tosylate analogue was inert under
the same conditions.
(2) (a) Roy, A.; Hartwig, J. J. Am. Chem. Soc. 2003, 125, 8704–8705.
(b) Nguyen, H.; Huang, X.; Buchwald, S. J. Am. Chem. Soc. 2003, 125,
11818–11819. (c) Zhang, L.; Meng, T.; Wu, J. J. Org. Chem. 2007, 72,
9346–9349. (d) Steinhuebel, D.; Baxter, J.; Palucki, M.; Davies, I. J. Org.
Chem. 2005, 70, 10124–10127. (e) Baxter, J.; Steinhuebel, D.; Palucki, M.;
Davies, I. Org. Lett. 2005, 7, 215–218. (f) Wu, J.; Zhu, Q.; Fathi, R.; Yang,
Z. J. Org. Chem. 2003, 68, 670–673. (g) Molander, G.; Yun, C. Tetrahedron
2002, 58, 1465–1470. (h) Ackermann, L.; Althammer, A. Org. Lett. 2006,
8, 3457–3460. (i) Huffman, M.; Yasuda, N. Synlett 1999, 471–473. (j) For
an example of Sonogashira coupling of a vinyl tosylate, see: Woo, J.;
Walker, S.; Faul, M. Tetrahedron Lett. 2007, 48, 5679–5682. (k) Fu, X.;
Zhang, S.; Yin, J.; Schumacher, D. Tetrahedron Lett. 2002, 43, 6673–6676.
(l) For reductive deoxygenation of aryl mesylate, see: Sajiki, H.; Mori, A.;
Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Org. Lett. 2006, 8, 987–
990. (m) For an amination of mesylates, see: So, C.; Zhou, Z.; Lau, C.;
Kwong, F. Angew. Chem., Int. Ed. 2008, 47, 1–6.
In conclusion, we have demonstrated the practical and
scalable synthesis of aryl imidazolylsulfonates and their
(6) Goddard-Borger, E.; Stick, R. Org. Lett. 2007, 9, 3797–3800.
(7) (a) Staab, H.; Wendel, K. Angew. Chem. 1961, 73, 26. (b) Staab,
H.; Wendel, K. J. Liebigs Ann. Chem. 1966, 694, 86–90. (c) 1,1′-
Sulfonyldiimidazole has been used recently as an imidazole transfer reagent;
see: Keith, J. J. Org. Chem. 2008, 73, 327–330.
(8) (a) For recent reviews of the Suzuki-Miyaura coupling reaction see:
Doucet, H. Eur. J. Org. Chem. 2008, 7, 1133-1155 and(b) Alonso, F.;
Beletskaya, I.; Yus, M. Tetrahedron 2008, 64, 3047–3101. (c) For a recent
review of Negishi couplings, see: Negishi, E.-I. Bull. Chem. Soc. Jpn. 2007,
80, 233–257. (d) Reeder, M.; Gleaves, H.; Hoover, S.; Imbordino, R.
Pangborn. J. Org. Proc. Res. DeV. 2003, 7, 696–699. (e) Anderson, B.;
Becke, L.; Booher, R.; Flaugh, M.; Harn, N.; Kress, T.; Varie, D.; Wepsiec,
J. J. Org. Chem. 1997, 62, 8364–8369. (f) Anderson, B.; Harn, N. Synthesis
1996, 5, 583–585. (g) Crowe, E.; Hossner, F.; Hughes, M. Tetrahedron
1995, 51, 8889–8890.
(3) (a) Hanessian, S.; Vate`le, J.-M. Tetrahedron Lett. 1981, 37, 3579–
3582. (b) Vate`le, J.-M.; Hanessian, S. Tetrahedron 1996, 52, 10557–10568,
and references therein.
(4) (a) Ingram, L.; Taylor, S. Angew. Chem., Int. Ed. 2006, 45, 3503–
3506. (b) Beaudion, S.; Kinsey, K.; Burns, J. J. Org. Chem. 2003, 68, 115–
119. (c) Ma, T.; Pai, B.; Zhu, Y.; Lin, J.; Shanmuganathan, K.; Du, J.;
Wang, C.; Kim, H.; Newton, M.; Cheng, Y.; Chu, C. J. Med. Chem. 1996,
39, 2835–2843. (d) Ahmed, F.; David, S.; Vate`le, J.-M. Carbohydr. Res.
1986, 155, 19–31. (e) David, S.; Malleron, A.; Dini, C. Carbohydr. Res.
1989, 158, 193–200. (e) Duan, S.; Binkley, E.; Binkley, R. J. Carbohydr.
Chem. 1998, 17, 391–396. (f) Tann, C.; Brodfuehrer, P.; Brundidge, S.;
Sapino, C.; Howell, H. J. Org. Chem. 1985, 50, 3644–3647. (g) Chou, T.;
Becke, L.; O’Toole, J.; Carr, M.; Parker, J Tetrahedron Lett. 1996, 37,
17–20. (h) Alais, J; David, S. Carbohydr. Res. 1992, 230, 79–87. (i) Best,
W.; Macdonald, J.; Skelton, B.; Stick, R.; Tilbrook, D.; White, A. Can.
J. Chem. 2002, 80, 857–865. (j) Meloncelli, P.; Stick, R. Aust. J. Chem.
2006, 59, 827–833.
(9) (a) Scott, W.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033–3040.
(b) Echavarren, A.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478–5486.
(c) Casado, A.; Espinet, P.; Gallego, A. J. Am. Chem. Soc. 2000, 122,
11771–11782.
(10) Albaneze-Walker, J.; Bazaral, C.; Leavey, T.; Dormer, P.; Murry,
J. Org. Lett. 2004, 6, 2097–2100.
(11) (a) Elder, D.; Teasdale, A.; Lipczynski, A. J. Pharm. Biomed. Anal.
2008, 46, 1–8. (b) Snodin, D. Reg. Toxicol. Pharm. 2006, 45, 79–90. (c)
Glowienke, S.; Frieauff, W.; Allmendinger, T.; Martus, H.-J.; Mueller, L.
Mutat. Res. 2005, 581, 23–34. (d) Committee for Medicinal Products
(CHMP); Guideline on the Limits of Genotoxic Impurities; European
Medicines Agency: London, 2008 (CPMP/SWP/5199/02, EMEA/CHMP/
QWP/251344/2006).
(5) (a) Teranishi, K.; Hisamatsu, M.; Yamada, T. Tetrahedron Lett. 2000,
41, 933–936. (b) Fevig, T.; Mao, M.; Katzenellenbogen, J. Steroids 1988,
51, 471–479. (d) Ahmed, F.; David, S.; Vate`le, J.-M. Carbohydr. Res. 1986,
155, 19–31.
(12) (a) Staab, H. Angew. Chem.m Int. Ed. Engl. 1962, 1, 351–367. (b)
Botchkavvieva, T; Passet, B. Zh. Obshch. Khim. 1983, 2221–2222.
Org. Lett., Vol. 11, No. 7, 2009
1465