A. S. Kiselyov et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1344–1348
1347
a
b
c
Hydrophobic Pocket
Ala866
Cl
Lys868
Val848
N
N
N
Val899
Phe918
NH
Leu840
Leu1035
Arg1032
NH2
N
+
H2N
N
H
Figure 2. Structural overlap between (a) 3 (green) and biphenyl analogue of D (blue) from the 2P2 l co-crystal structure with VEGFR; (b) structural overlap of compounds 3
and 31; (c) pharmacophore hypothesis for the mode of binding of (1,2,3-triazol-4-yl)benzenamine 3 within the ATP binding pocket of VEGFR-2. Central aromatic ring is
surrounded by Leu840, Val848, Val899, Phe918 and Leu1035. The amide is in close proximity with the Ala 866 and Lys868, and pyridine nitrogen is near Arg1032.
6. Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. Nat. Rev. Mol. Cell Biol.
2006, 5, 359.
7. Zachary, I. Biochem. Soc. Trans. 2003, 31, 1171.
Table 2
Compounds 3, 6 and 13 are ATP-competitive inhibitors of VEGFR-2.
Compound
Ki at IC50
(lM)
Ki at IC90 (lM)
8. Perona, R. Clin. Transl. Oncol. 2006, 8, 77.
9. Jin, T.; Nakatani, H.; Taguchi, T. World J. Gastroenterol. 2006, 12, 703.
10. Itakura, J.; Ishiwata, T.; Shen, B. Int. J. Cancer 2000, 85, 27.
11. Saaristo, A.; Karpanen, T.; Alitalo, K. Oncogene 2000, 19, 6122.
12. Ferrara, N.; Hillan, K. J.; Gerber, H. P.; Novotny, W. Nature Rev. Drug Discov.
2004, 3, 391.
3
6
13
0.12
0.09
0.16
0.11
0.08
0.14
13. Fine, S. L.; Martin, D. F.; Kirkpatrick, P. Nature Rev. Drug Disc. 2005, 4, 187.
14. Culy, C. Drugs Today 2005, 41, 23.
acidic proton of the pyrrole NH in the triazole ring of 31–34 may
cause unfavorable interactions in the binding pocket lined up with
Leu840, Phe918 and Leu1035 residues. Observed structure–activity
relationship of the novel (1,2,3-triazol-4-yl)benzenamines 3–28
are in line with the proposed pharmacophore hypothesis (Fig. 2c).
Active in vitro inhibitors of VEGFR-2 were further characterized
in a cell-based phosphorylation ELISA assay (Table 1).23 In general,
good in vitro-to-cell based activity correlation has been found for
these compounds. In our hands, the best compounds displayed
85–310 nM activity in inhibiting cell-based phosphorylation of
VEGFR-2. Further, competition assays were conducted for the se-
15. Bold, G.; Altmann, K-H.; Jorg, F.; Lang, M.; Manley, P. W.; Traxler, P.; Wietfeld,
B.; Bruggen, J.; Buchdunger, E.; Cozens, R.; Ferrari, S.; Pascal, F.; Hofmann, F.;
Martiny-Baron, G.; Mestan, J.; Rosel, J.; Sills, M.; Stover, D.; Acemoglu, F.; Boss,
E.; Emmenegger, R.; Lasser, L.; Masso, E.; Roth, R.; Schlachter, C.; Vetterli, W.;
Wyss, D.; Wood, J. M. J. Med. Chem. 2000, 43, 2310.
16. Chang, Y.S.; Cortes, C.; Polony, B. Proc. Am. Assoc. Cancer Res. (AACR) 2005, 46,
Abstr 2030.
17. Manley, P. W.; Furet, P.; Bold, G.; Brüggen, J.; Mestan, J.; Meyer, T.; Schnell, C.;
Wood, J. J. Med. Chem. 2002, 45, 5697.
18. Kaufman, S.; Starnes, C.; Coxon, A. Proc. Am. Assoc. Cancer Res. (AACR) 2006, 47,
Abstr 3792.
19. Kiselyov, A. S.; Piatnitski, L. E.; Samet, A. V.; Kisly, V. P.; Semenov, V. V. Bioorg.
Med. Chem. Lett. 2007, 17, 1369. and references cited therein.
20. Kiselyov, A. S.; Balakin, K.; Tkachenko, S. E. Expert Opin. Invest. Drugs 2007, 16,
83.
lected molecules with varying concentration (0–100 lM) of ATP.
21. Analytical data for selected molecules:2-(1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-
yl)-N-(pyridin-4-ylmethyl)benzenamine (3): mp 174–175 °C; 1H NMR (400 MHz,
DMSO-d6) d, ppm: 4.28 (d, J = 8.0 Hz, 2H), 6.50 (d, J = 7.2 Hz, 1H), 6.61 (br s,
exch D2O, 1H, NH), 6.93 (m, 1H), 7.06 (d, J = 7.6 Hz, 1H), 7.22 (m, 1H), 7.28 (d,
J = 7.6 Hz, 1H), 7.35 (s, 1H), 7.40 (m, 1H), 7.46 (d, J = 7.2 Hz, 2H), 7.94 (s, 1H),
8.55 (d, J = 7.2 Hz, 2H), 8.73 (d, J = 7.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) d,
ppm: 45.8, 109.6, 113.7, 118.0, 124.3, 125.6, 127.9, 128.2, 128.5, 129.4, 129.8,
132.1, 134.2, 134.7, 146.4, 147.4, 148.7, 150.1; ESI MS (M+1): 363, (M-1): 361.
Elemental analysis: Calcd for C20H16ClN5: C, 66.39; H, 4.46; N, 19.36. Found: C,
66.17; H, 4.58, N, 19.13.
Specifically, five different concentrations of 32P ATP were incu-
bated with VEGFR-2 along with varying concentrations (absence,
IC50, IC90) of the inhibitors 3, 6 and 13 for 45 min at RT. A double
reciprocal graph of the degree of phosphorylation (1/cpm) against
ATP-concentration (1/[ATP]) was plotted. The data were analyzed
by a non-linear least-squares program to determine kinetic param-
eters using GraphPad software. Determined Ki values for the three
selected compounds are listed in Table 2. These data suggest an
ATP-competitive mechanism for the interaction of these inhibitors
with VEGFR-2.
N-(Pyridin-4-ylmethyl)-2-(1-(3-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-
yl)benzenamine (6): mp 196–197 °C; 1H NMR (400 MHz, DMSO-d6) d, ppm:
4.31 (d, J = 8.0 Hz, 2H), 6.48 (d, J = 7.2 Hz, 1H), 6.58 (br s, exch D2O, 1H, NH),
6.94 (m, 1H), 7.21 (m, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.33 (s, 1H), 7.36–7.41 (m,
4H), 7.97 (s, 1H), 8.56 (d, J = 7.6 Hz, 2H), 8.78 (d, J = 7.2 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6) d, ppm: 46.1, 109.4, 117.9, 120.1, 124.0, 124.3, 125.3,
127.8, 128.6, 128.9, 129.1, 129.7, 130.7, 131.5, 133.4, 146.0, 147.9, 148.5,
150.1; ESI MS (M+1): 396, (M-1): 394. Elemental analysis: Calcd for
C21H16F3N5: C, 63.79; H, 4.08; N, 17.71. Found: C, 63.52; H, 3.87, N, 17.49.2-
(1-(3-Chlorophenyl)-1H-1,2,3-triazol-4-yl)-N-(quinolin-4-ylmethyl)benzenamine
(26): mp 231–233 °C; 1H NMR (400 MHz, DMSO-d6) d, ppm: 4.31 (d, J = 7.6 Hz,
2H), 6.49 (d, J = 7.2 Hz, 1H), 6.65 (br s, exch D2O, 1H, NH), 6.91 (m, 1H), 7.03 (d,
J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.18 (m, 1H), 7.28–7.30 (m, 2H), 7.42 (m,
1H), 7.54 (m, 1H), 7.68 (m, 1H), 7.98 (d, J = 7.6 Hz, 1H), 8.07 (s, 1H), 8.21 (d,
J = 7.2 Hz, 1H), 8.71 (d, J = 7.2 Hz, 1H), 8.91 (d, J = 7.2 Hz, 1H); 13C NMR
(100 MHz, DMSO-d6) d, ppm: 44.5, 109.4, 113.8, 118.1, 121.8, 124.3, 125.2,
126.2, 126.9, 127.5, 128.3, 128.9, 128.3,129.1, 129.3, 129.8, 130.2, 130.6, 132.3,
134.2, 146.4, 146.6, 149.1, 150.8; ESI MS (M+1): 413, (M-1): 411; Elemental
analysis: Calcd for C24H18ClN5: C, 69.98; H, 4.40; N, 17.00. Found: C, 69.76; H,
4.28; N, 16.81.
In summary, we have described a series of (1,2,3-triazol-4-
yl)benzenamines as potent inhibitors of both VEGFR-2 and VEG-
FR-1 receptors. Enzymatic and cellular activities of representative
molecules are comparable to the clinical candidates VatalanibTM
and AMG-706. This outcome could be of benefit in the clinical set-
ting as both receptors are reported to mediate VEGF signaling in
the angiogenesis. Notably, 1H-1,2,3-triazole-4-carboxamide ana-
logues did not show any appreciable activity against the kinases
suggesting strict electronic and spatial demands for the proper
alignment of ligand in a binding pocket of the enzymes.
References and notes
N-((1H-imidazol-4-yl)methyl)-2-(1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)ben-
zenamine (28): mp 163–164 °C; 1H NMR (400 MHz, DMSO-d6) d, ppm: 4.30 (d,
J = 7.6 Hz, 2H), 6.51 (d, J = 7.2 Hz, 1H), 6.59 (br s, exch D2O, 1H, NH), 6.77 (s,
1H), 6.90 (m, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.21 (m, 1H), 7.29 (d, J = 7.6 Hz, 1H),
7.32 (s, 1H), 7.43 (m, 1H), 7.48 (s, 1H), 8.12 (s, 1H), 8.73 (d, J = 7.2 Hz, 1H), 12.9
(br s, exch D2O, 1H, NH imidazole); 13C NMR (100 MHz, DMSO-d6) d, ppm: 43.9,
1. Bailar, J. C., III; Gornick, H. L. N. Engl. J. Med. 1997, 336, 1569.
2. Boehm, T.; Folkman, J.; Browder, T. Nature 1997, 390, 404.
3. Risau, W. Nature 1997, 386, 671.
4. Klagsbrun, M.; Moses, M. A. Chem. Biol. 1999, 6, R217.
5. Hanahan, D.; Folkman, J. Cell 1996, 86, 353.