catalyzed transformations.3-5 Despite the high selectivity and
efficiency of these transition metal-catalyzed methods, many
require the use of expensive 2-haloanilides or 2-(alkynyl)phe-
nylisocyanates as the starting materials.3 Direct C-H function-
alization has emerged as a promising and economically attractive
alternative for the direct cyclization of N-arylpropiolamides with
an electrophile4 or a nucleophile.5 Zhu and co-workers have
first reported a Pd(0)-catalyzed intermolecular domino carbo-
palladation/C-H activation/C-C bond-forming reaction that
employs both an anilide sp2 C-H bond and an electrophilic
reagent (aryl iodide) as the coupling partners.4 However, only
carbon atoms were introduced to the triple bond to form
carbon-carbon bonds. Many bioactive 3-methyleneindolin-2-
ones include the carbon-heteroatom bonds at the terminal of
the 3-methylene group. Recently, we described several protocols
for constructing carbon-carbon bonds or carbon-heteroatom
bonds at the terminal of the 3-methylene group by the Pd(II)/
Pd(IV)-catalyzed intermolecular C-H functionalization of N-
arylpropiolamides with a nucleophilic reagent (phthalimide, an
acid, or an aryliodonium salt). However, these oxidative
approaches suffer the limitation of requiring noneasily accessible
iodine(III) salts as the oxidants.5 Therefore, a novel strategy,
involving the use of inexpensive and environmentally benign
oxidants, able to carry out the C-H functionalization to
construct carbon-heteroatom bonds, would be highly desirable.6-9
Here, we report the first example of Pd(II)-catalyzed intramo-
lecular C-H activation reactions of 3-(2-(hydroxymethyl)aryl)-
N-phenylpropiolamides to prepare (E)-3-(isobenzofuran-3(1H)-
Synthesis of (E)-3-(Isobenzofuran-3(1H)-ylidene)-
indolin-2-ones by the Palladium-Catalyzed
Intramolecular C-H Functionalization Process
Peng Peng,† Bo-Xiao Tang,† Shao-Feng Pi,† Yun Liang,†
and Jin-Heng Li*,†,‡
Key Laboratory of Chemical Biology & Traditional Chinese
Medicine Research (Ministry of Education), Hunan Normal
UniVersity, Changsha 410081, China, and State Key
Laboratory of Chemo/Biosensing and Chemometrics, Hunan
UniVersity, Changsha 410082, China
ReceiVed February 27, 2009
A novel and selective protocol has been developed for the
synthesis of (E)-3-(isobenzofuran-3(1H)-ylidene)indolin-2-
ones by Pd-catalyzed oxidative intramolecular C-H func-
tionalization reactions of various 3-(2-(hydroxymethyl)aryl)-
N-methyl-N-arylpropiolamides in moderate yields. Mechanisms
involving a C-H activation process were proposed for this
transformation on the basis of the observed values of kinetic
isotope effects.
(3) (a) Cheung, W. S.; Patch, R. J.; Player, M. R. J. Org. Chem. 2005, 70,
3741. (b) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta,
S.; Takemoto, Y. J. Org. Chem. 2005, 70, 6972. (c) D’Souza, D. M.; Rominger,
F.; Mu¨ller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 153. (d) Yanada, R.; Obika,
S.; Oyama, M.; Takemoto, Y. Org. Lett. 2004, 6, 2825. (e) Shintani, R.;
Yamagami, T.; Hayashi, T. Org. Lett. 2006, 8, 4799. (f) Miura, T.; Takahashi,
Y.; Murakami, M. Org. Lett. 2007, 9, 5075. (g) Tang, S.; Yu, Q.-F.; Peng, P.;
Li, J.-H.; Zhong, P.; Tang, R.-Y. Org. Lett. 2007, 9, 3413. (h) Miura, T.;
Takahashi, Y.; Murakami, M. Org. Lett. 2008, 10, 1743. (i) Miura, T.; Toyoshima,
T.; Takahashi, Y.; Murakami, M. Org. Lett. 2008, 10, 4887. (j) Park, J. H.;
Kim, E.; Chung, Y. K. Org. Lett. 2008, 10, 4719.
(4) (a) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett. 2006, 8,
4927. (b) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291.
(5) (a) Tang, S.; Peng, P.; Pi, S.-F.; Liang, Y.; Wang, N.-X.; Li, J.-H. Org.
Lett. 2008, 10, 1179. (b) Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng,
C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10, 1875. (c) Tang,
S.; Peng, P.; Zhong, P.; Li, J.-H. J. Org. Chem. 2008, 73, 5476.
(6) For selected papers on the kinetic isotope effect studies, see: (a) Shue,
R. S. J. Am. Chem. Soc. 1971, 93, 7116. (b) Boele, M. D. K.; van Strijdonck,
G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen,
P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (c) Hennessy, E. J.; Buchwald,
S. L. J. Am. Chem. Soc. 2003, 125, 12084. (d) Tunge, A. A.; Foresee, L. N.
Organometallics 2005, 24, 6640. (e) Campeau, L.-C.; Parisien, M.; Jean, A.;
Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. (f) Garcıa-Cuadrado, D.; de
Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem.
Soc. 2007, 129, 6880.
(7) For selected reviews on the aloxypalladation reactions, see: (a) Stahl, S. S.
Angew. Chem., Int. Ed. 2004, 43, 3400. (b) Hosokawa, T.; Murahash, S.-I. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.,
Ed.; J. Wiley & Sons: New York, 2002; p 2186. (c) Cacchi, S.; Arcadi, A. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.,
Ed.; J. Wiley & Sons: New York, 2002; p 2193. (d) Henry, P. M. Palladium-
Catalyzed Oxidation of Hydrocarbons; D. Reidel: Dordrecht, Holland, 1980.
(e) Ba¨ckvall, J.-E. Acc. Chem. Res. 1983, 16, 335. (f) Stahl, S. S. Science 2005,
309, 1824. (g) Sigman, M. S.; Schultz, M. J. J. Org. Biomol. Chem. 2004, 2,
2551. (h) Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221. (i) Stoltz,
B. M. Chem. Lett. 2004, 33, 362. (j) Nishimura, T.; Uemura, S. Synlett 2004,
201. (k) Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A.
Acc. Chem. Res. 2002, 35, 774. (l) Toyota, M.; Ihara, M. Synlett 2002, 1211.
(m) Muzart, J. Tetrahedron 2003, 59, 5789–5816.
The indolin-2-one skeleton is a prevalent motif found in many
naturally occurring products and biologically active compounds.1
Two 3-methyleneindolin-2-ones, SU11248 and tenidap, were
commercialized as medicines by Pfizer Inc. The traditional
method for synthesizing these compounds is the Knoevenagel
reaction,butitissometimeslimitedduetoitslowstereoselectivity.1,2
Recently, much attention has been paid on transition metal-
† Hunan Normal University.
‡ Hunan University.
(1) (a) Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh,
B. K.; Hubbard, S. R.; Schlessinger, J. Science 1997, 276, 955. (b) Sun, L.;
Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L. K.;
McMahon, G.; Tang, C. J. Med. Chem. 1999, 42, 5120. (c) Hare, B. J.; Walters,
W. P.; Caron, P. R.; Bemis, G. W. J. Med. Chem. 2004, 47, 4731. (d) Liao,
J. J.-L. J. Med. Chem. 2007, 50, 409. (e) Drugs Fut. 1990, 15, 898. (f) Graczyk,
P. P. J. Med. Chem. 2007, 50, 5773. (g) Andrews, S. W.; Guo, X.; Zhu, Z.;
Hull, C. E.; Wurster, J. A.; Wang, S.; Wang, E. H.; Malone, T. U.S. Pat. Appl.
Publ. 2006, 316 pp, USXXCO US 2006004084 A1 20060105, CAN 144: 108205,
An 2006: 14038.
(2) (a) Mori, M.; Ban, Y. Tetrahedron Lett. 1979, 20, 1133. (b) Wang, L.;
Zhang, Y.; Hu, H.-Y.; Fun, H. K.; Xu, J.-H. J. Org. Chem. 2005, 70, 3850. (c)
Kalinski, C.; Umkehrer, M.; Schmidt, J.; Ross, G.; Kolb, J.; Burdack, C.; Hiller,
W.; Hoffmann, S. D. Tetrahedron Lett. 2006, 47, 4683. (d) Yang, T.-M.; Liu,
G. J. Comb. Chem. 2007, 9, 86. (e) Fressigne´, C.; Girard, A.-L.; Durandetti,
M.; Maddaluno, J. Angew. Chem., Int. Ed. 2008, 47, 891.
10.1021/jo900437p CCC: $40.75
Published on Web 03/27/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 3569–3572 3569