ladium,5 nickel,6 copper,7 cobalt,8 and iron.9 A highly general
palladium catalyst to form biaryl sulfides and alkyl-aryl sulfides
from aryl bromides and chlorides was reported recently by
Hartwig.5a Hartwig’s palladium catalyst is composed of a
strongly coordinating bidentate ligand that resists displacement
by the thiolate anion, likely the cause of catalyst deactivation
in most of these reactions. For this reason, the use of palladium
catalysts ligated by monodentate phosphine ligands to form these
carbon-sulfur bonds has shown limited reaction scope, and in
many cases, completely failed to promote this coupling reaction.
The inefficiency of these catalysts to promote carbon-sulfur
bond formation is likely caused by the displacement of the
metal-bound phosphines by thiolates, producing an inactive
catalyst.5g While preparing aryl ketones with the Fukuyama
reaction,10 the formation of an appreciable quantity of aryl
sulfide in the presence of the palladium catalyst [Pd(µ-
Br)(PtBu3)]2 (1) was observed (Scheme 1).11 Because of the
previously described failures of palladium complexes of mono-
dentate phosphines to catalyze the formation of carbon-sulfur
bonds from aryl halides and thiols, we decided to investigate
the scope of this reaction and attempt to identify the factors
that allow this transformation to occur.
Zinc-Mediated Palladium-Catalyzed Formation of
Carbon-Sulfur Bonds
Chad C. Eichman and James P. Stambuli*
EVans Chemical Laboratories, The Ohio State UniVersity,
100 West 18th AVenue, Columbus, Ohio 43210
ReceiVed March 06, 2009
A catalytic amount of zinc chloride in combination with a
palladium catalyst ligated by a monodentate phosphine allows
the coupling of aryl and alkyl thiols with aryl bromides in
high yields. The addition of zinc chloride to a palladium
catalyst system that reportedly failed to promote sulfide
formation allows this once ineffective catalyst system to
provide the sulfide product in good yield. This paper
describes a high-yielding and general monodentate phos-
phine-ligated palladium catalyst for biaryl and alkyl aryl
sulfide formation.
(4) (a) Alcaraz, M.-L.; Atkinson, S.; Cornwall, P.; Foster, A. C.; Gill, D. M.;
Humphries, L. A.; Keegan, P. S.; Kemp, R.; Merifield, E.; Nixon, R. A.; Noble,
A. J.; O’Beirne, D.; Patel, Z. M.; Perkins, J.; Rowan, P.; Sadler, P.; Singleton,
J. T.; Tornos, J.; Watts, A. J.; Woodland, I. A. Org. Process Res. DeV. 2005, 9,
555. (b) Procter, D. J. J. Chem. Soc., Perkin Trans. 1 2001, 335. (c) Liu, G.;
Huth, J. R.; Olejniczak, E. T.; Mendoza, R.; DeVries, P.; Leitza, S.; Reilly,
E. B.; Okasinski, G. F.; Fesik, S. W.; von Geldern, T. W. J. Med. Chem. 2001,
44, 1202.
(5) (a) Ferna´ndez-Rodriguez, M. A.; Hartwig, J. F. J. Org. Chem. 2009, 74,
1663. (b) Lee, J.-Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413. (c) Fukuzawa,
S.; Tanihari, D.; Kikuchi, S. Synlett 2006, 13, 2145. (d) Ferna´ndez-Rodriguez,
M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. (e)
Mispelaere-Canivet, C.; Spindler, J. F.; Perrio, S.; Beslin, P. Tetrahedron 2005,
61, 5253. (f) Moreau, X.; Campagne, J. M.; Meyer, G.; Jutand, A. Eur. J. Org.
Chem. 2005, 3749. (g) Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397.
(h) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587. (i) Li, G. Y.; Zheng, G.; Noonan,
A. F. J. Org. Chem. 2001, 66, 8677. (j) Migita, T.; Shimizu, T.; Asami, Y.;
Shiobara, J.; Kato, Y.; Kosugi, M. Bull. Chem. Soc. Jpn. 1980, 53, 1385. (k)
Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 13.
Metal-catalyzed cross-coupling reactions have revolutionized
how chemists synthesize small molecules. As evidence, a large
number of reviews have been devoted to metal-catalyzed cross-
coupling reactions.1 Because of their ability to stabilize unsatur-
ated metal complexes,2 bulky monodentate phosphines are
frequently used in combination with late transition metals as
catalysts for many cross-coupling reactions.1b However, these
catalysts typically do not promote the formation of carbon-sulfur
bonds because of the displacement of these ligands by the
thiolate coupling partners employed in these reactions.3
The challenge of finding a catalyst for the formation of
carbon-sulfur bonds, as well as the presence of arylsulfides in
drug candidates4 has sparked the development of new technol-
ogy to create this bond. A wide range of transition metals have
been used to catalyze this coupling reaction, including pal-
(6) (a) Taniguchi, N. J. Org. Chem. 2004, 69, 6904. (b) Millois, C.; Diaz, P.
Org. Lett. 2000, 2, 1705. (c) Percec, V.; Bae, J. Y.; Hill, D. H. J. Org. Chem.
1995, 60, 6895.
(7) (a) Herrero, M. T.; San Martin, R.; Dom´ınguez, E. Tetrahedron 2009,
65, 1500. (b) Carril, M.; San Martin, R.; Dom´ınguez, E; Tellitu, I. Chem.sEur.
J. 2007, 13, 5100. (c) Rout, L.; Sen, T.; Punniyamurthy, T. Angew. Chem., Int.
Ed. 2007, 46, 5583. (d) Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863. (e)
Taniguchi, N. J. Org. Chem. 2007, 72, 3863. (f) Verma, A. K.; Singh, J.;
Chaudhary, R. Tetrahedron Lett. 2007, 48, 7199. (g) Chen, Y.-J.; Chen, H.-H.
Org. Lett. 2006, 8, 5609. (h) Zhu, D.; Xu, L.; Wu, F.; Wan, B. S. Tetrahedron
Lett. 2006, 47, 5781. (i) Taniguchi, N. J. Org. Chem. 2006, 71, 7874. (j) Bates,
C. G.; Saejueng, P.; Doherty, M. Q.; Venkataraman, D. Org. Lett. 2004, 6, 5005.
(k) Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. Synlett 2004, 1254. (l)
Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (m) Wu,
Y.-J.; He, H. Synlett 2003, 1789. (n) Bates, C. G.; Gujadhur, R. K.; Venkat-
araman, D. Org. Lett. 2002, 4, 2803. (o) Kwong, K. Y.; Buchwald, S. L. Org.
Lett. 2002, 4, 3517. (p) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002,
4, 4309. (q) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron
Lett. 2000, 41, 1283. (r) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett.
2000, 2, 2019.
(1) (a) Hartwig, J. F. Nature (London) 2008, 455, 314. (b) Fu, G. Acc. Chem.
Res. 2008, 41, 1555. (c) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (d)
Hartwig, J. F. Inorg. Chem. 2007, 46, 1936. (e) Yin, L.; Liebscher, J. Chem.
ReV. 2007, 107, 133. (f) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem.,
Int. Ed. 2005, 44, 4442. (g) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-
Coupling Reactions; Wiley-VCH: Weinheim, Germany, 2004; Vol. 1.
(2) Stambuli, J. P.; Bu¨hl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124,
9346.
(8) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8, 5613.
(9) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008, 47, 2880.
(10) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahe-
dron Lett. 1998, 39, 3189.
(3) (a) Mann, G.; Baran˜ano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei,
I. A. J. Am. Chem. Soc. 1998, 120, 9205. (b) Baran˜ano, D.; Hartwig, J. F. J. Am.
Chem. Soc. 1995, 117, 2937. (c) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc.
1995, 117, 2937.
(11) The employment of this catalyst has been reported: (a) Dura´-Vila´, V.;
Mingos, D. M. P.; Vilar, R.; White, A. J. P.; Williams, D. J. J. Organomet.
Chem. 2000, 600, 198. (b) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2002, 41, 4746.
10.1021/jo900385d CCC: $40.75
Published on Web 04/03/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 4005–4008 4005