S. Bardhan et al. / Tetrahedron Letters 50 (2009) 5733–5736
5735
N
N
100; (d) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076–15077;
(e) Popp, B. V.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 2804–2805; (f)
Yamamoto, Y.; Suzuki, R.; Hattori, K.; Nishiyama, H. Synlett 2006, 1027–1030;
(g) Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun.
2005, 15, 1990–1992; (h) Hatamoto, Y.; Sakaguchi, S.; Ishii, Y. Org. Lett. 2004, 6,
4623–4625; (i) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420; (j)
Yoshida, H.; Yamaryo, Y.; Ohshita, J.; Kunai, A. Tetrahedron Lett. 2003, 44, 1541–
1544; (k) Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tetrahedron Lett. 2002,
43, 7899–7902.
N
N
OH
B
N
N
N
O
N
18O
O
N
OH
N
N
N
N
N
+
N
Cs2CO3, DME - H2O
<10%, 18O2
N
17
2
44:56 (24 hrs)
9. Methods for synthesis of unsymmetrical biaryls have been reported: (a) Vogler,
T.; Studer, A. Org. Lett. 2008, 10, 129–131; (b) Alessi, M.; Larkin, A. L.; Ogilvie, K.
A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V. C. J. Org. Chem. 2007, 72, 1588–
1594; (c) Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett 2007, 48,
2713–2715; (d) Demir, A. S.; Reis, O.; Emrullahoglu, M. J. Org. Chem. 2003, 68,
578–580.
10. (a) Adamo, C.; Amatore, C.; Ciofini, I.; Jutand, A.; Lakmini, H. J. Am. Chem. Soc.
2006, 128, 6829–6836; (b) Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W.
A., III J. Am. Chem. Soc. 2005, 127, 13172–13179; (c) Denney, M. C.; Smythe, N.
A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 2508–
2509.
Scheme 2.
H2O2 and ArPd(OH)(PPh3)2.6,10 Excess arylboronic acid can, how-
ever, be consumed in the palladium-catalyzed reaction by trans-
metalation of ArPd(OH)(PPh3)2 leading to Ar2Pd(PPh3)2 and its
reductive elimination to the homocoupling product Ar-Ar.10
Although the conversion of arylboronic acids to phenols has been
11
previously reported to proceed with 30% H2O2 or other oxidants
11. Simon, J.; Salzbrunn, S.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem.
2001, 66, 633–634.
such as perborate,12 hydroxylamine,13 and oxone,
limitations
14,15
12. (a) Nanni, E. J.; Sawyer, D. T., Jr. J. Am. Chem. Soc. 1980, 102, 7591–7593; (b)
Fontani, P.; Carboni, B.; Vaultier, M.; Maas, G. Synthesis 1991, 605–609.
13. Kianmehr, E.; Yahyaee, M.; Tabatabai, K. Tetrahedron Lett. 2007, 48, 2713–2715.
14. Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117–5118.
15. Lee, Y.; Kelly, M. J. Tetrahedron Lett. 2006, 47, 4897–4901.
16. Dickie, D. A.; MacIntosh, I. S.; Ino, D. D.; He, Q.; Labeodan, O. A.; Jennings, M. C.;
Schatte, G.; Walsby, C. J.; Clyburne, J. A. C. Can. J. Chem. 2008, 86, 20–31.
17. Kilitoglu, B.; Arndt, H.-D. Synlett 2009, 720–723.
of these methods have been reported.10,16,17 Experimentally, we
aimed at using a low concentration of hydrogen peroxide (<1%)
for comparative purposes with the oxidative palladium-catalyzed
reaction5–7 since in this case higher concentrations were inhibitory
to the formation of heteroaryl ethers.6,7 The experimental proce-
dure adopted under the palladium-free conditions is a one-pot,
two-step sequence involving oxidation of arylboronic acids with
(0.8–1%) hydrogen peroxide followed by the addition of the OPt het-
erocycle 2 or 3.
18. Bae, S.; Lakshman, M. K. J. Org. Chem. 2008, 73, 1311–1319.
19. Bae, S.; Lakshman, M. K. J. Am. Chem. Soc. 2007, 129, 1782–1789.
20. 5-Bromo-2-phenoxypyrimidine (4): Phenyl boronic acid (50 mg, 0.41 mmol) and
Cs2CO3 (443 mg, 1.36 mmol) were dissolved in DME (5 mL) at rt. Aqueous H2O2
(0.04 mL, 0.8%) was added to the reaction mixture and purged with O2. The
reaction mixture was stirred for 6 h. 3-(5-Bromo-pyrimidin-2-yloxy)-3H-
[1,2,3] triazolo [4,5-b]pyridine (36 mg, 0.12 mmol) was then added at rt and
the reaction mixture was stirred for a further 10 h. The crude reaction mixture
was then directly purified by flash chromatography to afford a white solid
(49 mg, 58%). 1H NMR (CDCl3, 300 MHz) d (ppm) 8.56 (s, 2H), 7.45 (m, 2H), 7.29
(m, 1H), HRMS (ES-MS) [(M+H)+]: for C10H7BrN2O 250.9814, found 250.9817.
5-Bromo-2-(2-methoxyphenoxy)-pyrimidine (5): 1H NMR (CDCl3, 300 MHz) d
(ppm) 8.54 (s, 2H), 7.17 (m, 2H), 7.03 (m, 2H), 3.75 (s, 3 H). HRMS (ES-MS)
[(M+H)+]: for C11H9BrN2O2 280.9920, found 280.9918.
In conclusion, the reaction of arylboronic acids with OPt hetero-
cycles 2 and 3 under Cs2CO3, (0.8%) H2O2, and DME conditions pro-
duces heteroaryl ethers in good synthetic yields and is superior to
that involving Cs2CO3, O2, and DME–H2O conditions. Comparative
studies between quinazoline 2 and pyrimidine 3 indicate that the
palladium-free Cs2CO3, (0.8%) H2O2, and DME conditions produce
heteroaryl ethers 4–16 in yields comparable to that of the palla-
dium-catalyzed conditions (Pd(PPh3)4, O2, Cs2CO3, and DME–H2O)
in the case of 3. However, for quinazoline 2 the palladium-cata-
lyzed process is more efficient.
This new transformation complements the direct SNAr with
phenols5,18,19 and competes well with the oxidative palladium-cat-
alyzed reaction.6,7 The relative simplicity in eliminating palladium
metal and dioxygen and employing H2O2 as an oxidant makes it an
attractive consideration for the synthesis of heteroaryl ethers. This
reaction strongly highlights on the complexity in understanding
the reaction pathways in these oxidative transformations.20
5-Bromo-2-(3-methoxyphenoxy)pyrimidine (6): 1H NMR (CDCl3, 300 MHz)
d
(ppm) 8.57 (s, 2H), 7.33 (m, 1H), 6.83 (m, 3H), 3.81 (s, 3H). HRMS (ES-MS)
[(M+H)+]: for C11H9BrN2O2 280.9926, found 280.9919.
5-Bromo-2-(4-methoxyphenoxy)-pyrimidine (7): 1H NMR (CDCl3, 300 MHz) d
(ppm) 8.56 (s, 2H), 7.12 (d, 2H, J = 9.3 Hz), 6.96 (d, 2H, J = 9.0 Hz), 3.82 (s, 3H).
HRMS (ES-MS) [(M+H)+]: for C11H9BrN2O2 280.9920, found 280.9919.
5-Bromo-2-(4-methylsulfanyl-phenoxy)-pyrimidine (8): 1H NMR (CDCl3,
300 MHz)
d (ppm) 8.57 (s, 2H), 7.33 (d, 2H, J = 6.6 Hz), 7.13 (d, 1H, J =
6.9 Hz), 2.50 (s, 3H). HRMS (ES-MS) [(M+H)+]: for C11H9BrN2OS 296.9692,
found 296.9688.
2-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester (9): 1H NMR (CDCl3,
300 MHz) d (ppm) 8.54 (s, 2H), 8.08 (dd, 1H, J = 1.6 Hz, J = 7.8 Hz), 7.63 (dt, 1H,
J = 1.5 Hz, J = 7.5 Hz), 7.37 (dt, 1H, J = 0.9 Hz, J = 7.8 Hz), 7.24 (dd, 1H, J = 0.9 Hz,
J = 8.1 Hz), 3.72 (s, 3H). HRMS (ES-MS) [(M+H)+]: for C12H9BrN2O3 308.9869,
found 308.9871.
Supplementary data
3-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester (10): 1H NMR (CDCl3,
300 MHz) d (ppm) 8.58 (s, 2H), 7.98 (m, 1H), 7.86 (t, 1H, J = 2.4 Hz), 7.53 (t, 1H,
J = 7.8 Hz), 7.39 (m, 1H), 3.92 (s, 3H). HRMS (ES-MS) [(M+H)+]: for C12H9BrN2O3
308.9869, found 308.9875.
Supplementary data associated with this article can be found, in
4-(5-Bromo-pyrimidin-2-yloxy)-benzoic acid methyl ester (11): 1H NMR (CDCl3,
300 MHz) d (ppm) 8.59 (s, 2H), 8.14 (d, 2H, J = 9.2 Hz), 7.24 (d, 2H, J = 8.4 Hz),
3.93 (s, 3H). HRMS (ES-MS) [(M+H)+]: for C12H9BrN2O3 308.9869, found
308.9870.
References and notes
1-[2-(5-Bromo-pyrimidin-2-yloxy)-phenyl]-ethanone (12): 1H NMR (CDCl3,
300 MHz) d (ppm) 8.55 (s, 2H), 7.89 (dd, 1H, J = 1.8 Hz, J = 7.8 Hz), 7.60 (td,
1H, J = 1.8 Hz, J = 7.5 Hz), 7.38 (td, 1H, J = 0.9 Hz, J = 7.8 Hz), 7.23 (dd, 1H,
J = 0.9 Hz, J = 7.5 Hz), 2.52 (s, 3H).HRMS (ES-MS) [(M+H)+]: for C12H9BrN2O2
292.9920, found 292.9919.
1. (a) Wan, Z.-K.; Binnum, E.; Wilson, D. P.; Lee J. Org. Lett. 2005, 7, 5877–5880; (b)
Levins, C. G.; Wan, Z.-K. Org. Lett. 2008, 10, 1755–1758.
2. Wan, Z.-K.; Wacharasindhu, S.; Binnum, E.; Mansour, T. Org. Lett. 2006, 8, 2425–
2428.
3. PyAOP Alsina, J.; Giralt, E.; Albericio, F. Tetrahedron Lett. 1996, 37, 4195–4198;
BOP reagents: (a) Coste, J.; Frerot, E.; Jouin, P.; Castro, B. Tetrahedron Lett. 1991,
32, 1967–1970; (b) Srivastava, T. K.; Haq, W.; Bhanumati, S.; Velmurugan, D.;
Sharma, U.; Jagannathan, N. R.; Katti, S. B. Protein Peptide Lett. 2001, 8, 39–44.
1-[3-(5-Bromo-pyrimidin-2-yloxy)-phenyl]-ethanone (13): 1H NMR (CDCl3,
300 MHz) d (ppm) 8.58 (s, 2H), 7.55 (m, 1H), 7.34 (t, 1H, J = 7.8 Hz), 7.13 (m,
1H), 6.79 (s, 1H), 2.62 (s, 3H). HRMS (ES-MS) [(M+Na)+]: for C12H9BrN2O2
314.9740, found 314.9735.
4. (a) Kang, F.-A.; Sui, Z.; Murray, W. V. J. Am. Chem. Soc. 2008, 130, 11300–11302;
(b) Kang, F.-A.; Sui, Z.; Murray, W. V. Eur. J. Org. Chem. 2009, 461–479.
5. Wan, Z.-K.; Wacharasindhu, S.; Levins, C.; Lin, M.; Tabei, K.; Mansour, T. S. J.
Org. Chem. 2007, 72, 10194–10210.
6. Wacharasindhu, S.; Bardhan, S.; Wan, Z.-K.; Tabei, K.; Mansour, T. S. J. Am.
Chem. Soc. 2009, 131, 4174–4175.
7. Bardhan, S.; Wacharasindhu, S.; Wan, Z.-K.; Mansour, T. S. Org. Lett. 2009, 11,
2511–2514.
8. (a) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int.
Ed. 2008, 47, 1473–1476; (b) Ban, I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett.
2008, 10, 3607–3609; (c) Xu, Z.; Mao, J.; Zhang, Y. Catal. Commun. 2007, 9, 97–
1-[4-(5-Bromo-pyrimidin-2-yloxy)-phenyl]-ethanone (14): 1H NMR (CDCl3,
300 MHz)
d (ppm) 8.59 (s, 2H), 8.06 (d, 2H, J = 9.2 Hz), 7.29 (d, 2H, J =
8.8 Hz), 2.62 (s, 3 H). HRMS (ES-MS) [(M+H)+]: for C12H9BrN2O2 292.9919,
found 292.9918.
5-Bromo-2-(pyrimidin-5-yloxy)-pyrimidine (15): 1H NMR (CDCl3, 300 MHz) d
(ppm) 9.13 (s, 2H), 8.73 (s, 2H), 8.62 (s, 2H). HRMS (ESI-MS) [(M+H)+]: for
C8H5BrN4O 252.972, found 252.9719.
5-Bromo-2-(pyrimidin-5-yloxy)-pyrimidine (16): 1H NMR (CDCl3, 300 MHz) d
(ppm) 8.91 (d, 2H, J = 5.1 Hz), 8.77 (s, 2H), 6.51 (d, 2H, J = 5.1 Hz). MS (ESI-MS)
[(M+H)+]: for C9H6BrN3O 252.06, found 252.20.