M. Wang et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1413–1415
1415
Table 1
facile, the substrate tolerance and specificity of PKS TEs can be
probed much more rapidly. Incorporation of amide linkages into
complex TE substrates will also facilitate study of TE-mediated
macrocyclization by allowing easy synthetic access to libraries of
substrates capable of undergoing macrocyclization. Lastly this re-
sult further strengthens the linkage between PKS and NRPS biosyn-
thetic systems.
Steady state kinetic perimeters for thioesterase catalyzed hydrolysis.
DEBS TE kcat/KM
(MÀ1 SÀ1
Epo TE kcat/KM
(MÀ1 SÀ1
Pim TE kcat/KM
(MÀ1 SÀ1
)
)
)
6
8
7.0 0.4
0.50 0.01
0.88 0.03
NR
7.75 0.19
1.47 0.07
0.80 0.11
0.39 0.03
145 10
12.5 0.5
91.3 2.9
1.29 0.05
NR
NR
10
12
14
16
19
21
NR
NR
24.2 1.2
75.1 11.5
38.8 14.6
110.0 27.2
1.14 0.06
23.3 3.6
NR
Acknowledgments
NR
This research was supported by Syracuse University and the
University of Ottawa.
NR, not reactive.
Supplementary data
strates.32 We proposed that peptidyl substrates adopt a different
binding mode preventing substrates with -substitution from
loading onto the active site serine. The Epo TE shows a 10-fold
preference for the S configuration (10 versus 8); however, no sub-
stituents are found at the C2 position in the epothilone family of
products. The gem dimethyl compound 12 is not processed by
a
Supplementary data associated with this article can be found, in
References and notes
any of the TEs, suggesting that the
single substituent.
a-position can only tolerate a
1. Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.
2. Cane, D. E.; Walsh, C. T.; Khosla, C. Science 1998, 282, 63.
3. Wiley, P. F.; Gerzon, K.; Flynn, E. H.; Sigal, M. V.; Weaver, O.; Quarck, U. C.;
Chauvette, R. R.; Monahan, R. J. Am. Chem. Soc. 1957, 79, 6062.
4. Mao, J. C.; Wiegand, R. G. Biochim. Biophys. Acta 1968, 157, 404.
5. Donadio, S.; Staver, M. J.; McAlpine, J. B.; Swanson, S. J.; Katz, L. Science 1991,
252, 675.
6. Golding, B. T.; Rickards, R. W. Tetrahedron. Lett. 1966, 30, 3551.
7. Aparicio, J. F.; Fouces, R.; Mendes, M. V.; Olivera, N.; Martin, J. F. Chem. Biol.
2000, 7, 895.
8. Gerth, K.; Bedorf, N.; Hofle, G.; Irschik, H.; Reichenbach, H. J. Antibiot. 1996, 49,
560.
9. Tang, L.; Shah, S.; Chung, L.; Carney, J.; Katz, L.; Khosla, C.; Julien, B. Science
2000, 287, 640.
10. Molnar, I.; Schupp, T.; Ono, M.; Zirkle, R.; Milnamow, M.; Nowak-Thompson, B.;
Engel, N.; Toupet, C.; Stratmann, A.; Cyr, D. D.; Gorlach, J.; Mayo, J. M.; Hu, A.;
Goff, S.; Schmid, J.; Ligon, J. M. Chem. Biol. 2000, 7, 97.
11. Ruttenberg, M. A.; King, T. P.; Craig, L. C. Biochemistry 1965, 4, 11.
12. Mootz, H. D.; Marahiel, M. A. J. Bacteriol. 1997, 179, 6843.
13. Kratzschmar, J.; Krause, M.; Marahiel, M. A. J. Bacteriol. 1989, 171, 5422.
14. Kopp, F.; Marahiel, M. A. Nat. Prod. Rep. 2007, 24, 735.
15. Kohli, R. M.; Walsh, C. T. Chem. Commun. 2003, 297.
16. Gokhale, R. S.; Hunziker, D.; Cane, D. E.; Khosla, C. Chem. Biol. 1999, 6, 117.
17. Weissman, K. J.; Smith, C. J.; Hanefeld, U.; Aggarwal, R.; Bycroft, M.; Staunton,
J.; Leadlay, P. F. Angew. Chem. Int. Ed. Engl. 1998, 37, 1437.
18. Pazirandeh, M.; Chirala, S. S.; Wakil, S. J. J. Biol. Chem. 1991, 266, 20946.
19. Meiser, P.; Weissman, K. J.; Bode, H. B.; Krug, D.; Dickschat, J. S.; Sandmann, A.;
Muller, R. Chem. Biol. 2008, 15, 771.
20. Butcher, R. A.; Schroeder, F. C.; Fischbach, M. A.; Straight, P. D.; Kolter, R.;
Walsh, C. T.; Clardy, J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1506.
21. Tsai, S. C.; Miercke, L. J. W.; Krucinski, J.; Gokhale, R.; Chen, J. C. H.; Foster, P. G.;
Cane, D. E.; Khosla, C.; Stroud, R. M. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14808.
22. Tsai, S. C.; Lu, H. X.; Cane, D. E.; Khosla, C.; Stroud, R. M. Biochemistry 2002, 41,
12598.
Our results show that the Pim TE is more substrate specific than
the DEBS or Epo TEs. Only compounds without methyl substitu-
ents, 6, 14, and 16, are processed by the Pim TE. Even when substi-
tution is present only at the d-position, such as in compounds 19
and 21, the Pim TE is unable to catalyze hydrolysis. Interestingly,
Pim TE has a high specificity constant for hydrolysis of 16 and
has a relatively low KM value (KM 0.84 mM). These data indicate
16 binds fairly tightly to the Pim TE binding pocket, leading to an
increase in enzyme–substrate complex concentration and an in-
crease in reaction rate. This is not a surprise. Pimaricin is a highly
hydrophobic polyene, suggesting that the Pim TE has evolved a
hydrophobic substrate binding surface, which can also tightly bind
the hydrophobic chain of 16.
Of three TEs, Epo TE is the most robust enzyme, showing the
highest hydrolytic activity and substrate tolerance. Our data
suggest that Epo TE prefers no substitution at the
a position such
as substrates 6, 16, and 21. The specificity constants observed for 6
is the highest seen for a PKS TE. Epo TE shows enantioselectivity
for dipeptide hydrolysis (21 versus 19). The similar Km values
(2.90 mM for 19 and 1.31 mM for 21) indicate there is no significant
difference in interactions driving enzyme–substrate complex for-
mation. The large kcat difference (19.2 minÀ1 for 21 and 3.05 minÀ1
for 19) indicates substantial interactions stabilizing the transition
state for acyl–enzyme intermediate formation with 21.
In conclusion our results demonstrate that PKS TEs can process
NRPS-like peptidyl substrates efficiently. We show that in many
cases the peptidyl substrates are processed more efficiently that
PKS-like substrates. PKS TEs process peptidyl substrates with com-
parable Michaelis constants to polypropionate substrates but with
greater turnover rates. Surprisingly, this suggests that the in-
creased rates of hydrolysis are not driven by better recognition of
the peptidyl substrates. Instead, we propose that new interactions
are being generated in the transition states that stabilize formation
of the acyl–enzyme intermediate for peptidyl substrates to a great-
er extent than polypropionate substrates.
23. Samel, S. A.; Wagner, B.; Marahiel, M. A.; Essen, L. O. J. Mol. Biol. 2006, 359, 876.
24. Frueh, D. P.; Arthanari, H.; Koglin, A.; Vosburg, D. A.; Bennett, A. E.; Walsh, C. T.;
Wagner, G. Nature 2008, 454, 903.
25. Bruner, S. D.; Weber, T.; Kohli, R. M.; Schwarzer, D.; Marahiel, M. A.; Walsh, C.
T.; Stubbs, M. T. Structure 2002, 10, 301.
26. Wang, M.; Boddy, C. N. Biochemistry 2008, 47, 11793.
27. Akey, D. L.; Kittendorf, J. D.; Giraldes, J. W.; Fecik, R. A.; Sherman, D. H.; Smith, J.
L. Nat. Chem. Biol. 2006, 2, 537.
28. Giraldes, J. W.; Akey, D. L.; Kittendorf, J. D.; Sherman, D. H.; Smith, J. L.; Fecik, R.
A. Nat. Chem. Biol. 2006, 2, 531.
29. Du, L.; Sanchez, C.; Shen, B. Metab. Eng. 2001, 3, 78.
30. Magarvey, N. A.; Fortin, P. D.; Thomas, P. M.; Kelleher, N. L.; Walsh, C. T. ACS
Chem. Biol. 2008, 20, 20.
31. Pulsawat, N.; Kitani, S.; Nihira, T. Gene 2007, 393, 31.
32. Sharma, K. K.; Boddy, C. N. Bioorg. Med. Chem. Lett. 2007, 17, 3034.
33. Boddy, C. N.; Schneider, T. L.; Hotta, K.; Walsh, C. T.; Khosla, C. J. Am. Chem. Soc.
2003, 125, 3428.
The ability to load peptidyl substrates onto PKS TEs provides a
powerful new tool for studying substrate specificity and macrocyc-
lization. Since an enormous number of amino acids are commer-
cially available, and the synthesis of small peptide libraries is
34. Lu, H. X.; Tsai, S. C.; Khosla, C.; Cane, D. E. Biochemistry 2002, 41, 12590.
35. He, W. G.; Wu, J. Q.; Khosla, C.; Cane, D. E. Bioorg. Med. Chem. Lett. 2006, 16, 391.