10.1002/chem.202002049
Chemistry - A European Journal
COMMUNICATION
Ed. 2014, 53, 4390–4394; b) F.-L. Zhang, X. Zhu, S. Chiba, Org. Lett.
2015, 17, 3138–3141; c) C. Lin, Y. Chen, B. Huang, Y. Liu, S. Cui, J. Org.
Chem. 2017, 82, 3950–3956; d) F. Rasool, A. Ahmed, N. hussaim, S. K.
Yousuf, D. Mukherjee, Org. Lett. 2018, 20, 4036–4039; e) D. K. Das, V.
K. Kannaujiya, M. M. Sadhu, S. K. Ray, V. K. Singh, J. Org. Chem. 2019,
84, 15865–15876.
[24] Epimerization at the 6-position of 3aa was confirmed under the same
reaction conditions using syn-3aa as the major diastereomer. See
Supporting Information for details.
[25] When a [4+2] cycloaddition product having a methyl substituent, instead
of the azide, at the 6-position was subjected to similar reaction conditions
using a chiral phosphoric acid catalyst, no epimerization was observed
at the 6-position. See Ref. [17a].
[12] For reviews on synthetic application of vinyl azides, see: a) B. Hu, S. G.
Dimagno, Org. Biomol. Chem. 2015, 13, 3844–3855; b) H. Hayashi, A.
Kaga, S. Chiba, J. Org. Chem. 2017, 82, 11981–11989; c) J. Fu, G.
Zanoni, E. A. Anderson, X. Bi, Chem. Soc. Rev. 2017, 46, 7208–7228.
[13] For the Schmidt rearrangement, see: a) K. F. Schmidt, Ber. dtsch. Chem.
Ges. 1924, 57, 704–706; b) P. A. S. Smith, J. Am. Chem. Soc. 1948, 70,
320–323; c) H. W. Moore, H. R. Shelden, W. Weyler, Jr., Tetrahedoron
Lett. 1969, 10, 1243–1246; d) A. Hassner, E. S. Ferdinandi, R. J. Isbister,
J. Am. Chem. Soc. 1970, 92, 1672–1675; e) M. Charaschanya, K. Li, H.
F. Motiwala, J. Aube, Org. Lett. 2018, 20, 6354–6358; f) G. Fang, Z. Liu,
S. Cao, H. Yuan, J. Zhang, L. Pan, Org. Lett. 2018, 20, 7113–7116.
[14] For reviews on organocatalysts, see: a) Enantioselective
Organocatalysis: Reactions and Experimental Procedures (Ed.: P. I.
Dalko) Wiley-VCH, New York, 2007; b) Science of Synthesis,
Asymmetric Organocatalysis 1, Lewis Base and Acid Catalysts (Ed.: B.
List) Georg Thieme Verlag KG, New York, 2012; c) Science of Synthesis,
Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysts, and
Additional Topics (Ed.: K. Maruoka) Georg Thieme Verlag KG, New York,
2012.
[26] The absolute configuration of enantioenriched 5aa was assigned to be
(S)-isomer by analogy of the stereochemical determination of 5ba. The
absolute stereochemistry of 5ba was determined by derivatization of the
stereochemically known compound into 5ba. See Supporting Information
for details.
[27] The results of screening for reaction conditions are summarized in
Supporting Information (Table S5).
[28] Aliphatic substituted vinyl azide, R1 = (CH2)2Ph, was also used in the
present reaction, however the initial cycloaddition reaction did not
proceed efficiently. The cycloaddition product was formed in low yield,
less than 15%, even at elevated reaction temperature to 0 °C.
[29] The formation of 3ab was confirmed by 1H NMR analysis. See
Supporting Information.
[30] Further optimization of the reaction conditions by changing the reaction
temperature was unsuccessful. See Supporting Information.
[15] For reviews on chiral Brøsnted acid catalysis, see: a) A. G. Doyle, E. N.
Jacobsen, Chem. Rev. 2007, 107, 5713–5743; b) T. Akiyama, Chem.
Rev. 2007, 107, 5744–5758; c) D. Kampen, C. M. Reisinger, B. List, Top.
Curr. Chem. 2010, 291, 395–456; d) T. Akiyama, K. Mori, Chem. Rev.
2015, 115, 9277–9306; e) T. James, M. van Gemmeren, B. List, Chem.
Rev. 2015, 115, 9388–9409.
[16] For reviews on BINOL-derived phosphoric acids and derivatives, see: a)
M. Terada, Chem. Commun. 2008, 4097–4112; b) M. Terada, Synthesis
2010, 1929–1982; c) D. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem.
Rev. 2014, 114, 9047–9153; d) R. Maji, S. C. Mallonjjala, S. E. Wheeler,
Chem. Soc. Rev. 2018, 47, 1142–1158. For seminal studies of chiral
phosphoric acid catalysts, see: e) T. Akiyama, J. Itoh, K. Yokota, K.
Fuchibe, Angew. Chem. Int. Ed. 2004, 43, 1566–1568; f) D. Uraguchi, M.
Terada, J. Am. Chem. Soc. 2004, 126, 5356–5357.
[17] For recent examples of the enantioselective [4+2] cycloaddition of N-acyl
imine derivatives, see: a) N. Momiyama, H. Okamoto, J. Kikuchi, T.
Korenaga, M. Terada, ACS Catal. 2016, 6, 1198–1204; b) M. Hatano, K.
Nishikawa, K. Ishihara, J. Am. Chem. Soc. 2017, 139, 8424–8427.
[18] For recent examples of the [4+2] cycloaddition of vinyl azides, see: a) X.
Zhu, Y.-F. Wang, F.-L. Zhang, S. Chiba, Chem. Asian. J. 2014, 9, 2458–
2462; b) N. Thirupathi, F. Wei, C.-H. Tung, Z. Xu, Nat. Commun, 2019,
10, 3158; c) M.-H. Shen, X.-C. Liang, C. Li, H. Wu, H.-Y. Qu, F.-M. Wang,
H.-D. Xu, Tetrahedron Lett. 2019, 60, 1025–1028.
[19] For resonance effect by azide functionality, see: a) J. D. Roberts, Chem.
Ber. 1961, 94, 273–278; b) R. Bonaccorsi, C. Petrongolo, E. Scrocco, J.
Tomasi, J. Chem. Phys. 1968, 48, 1500–1508; c) R. D. Bach, G. J.
Wolber, J. Org. Chem. 1982, 47, 239–245; d) S. Hoz, J. L. Wolk,
Tetrahedron Lett. 1990, 31, 4085–4088; e) J. P. Richard, T. L. Amyes,
Y.-G. Lee, V. Jagannadham, J. Am. Chem. Soc. 1994, 116, 10833–
10834; f) T. Katori, S. Itoh, M. Sato, H. Yamataka, J. Am. Chem. Soc.
2010, 132, 3413–3422.
[20] S. Pramanik, P. Ghorai, Org. Lett. 2014, 16, 2104–2107.
[21] For a review on the pot economy, see: Y. Hayashi, Chem. Sci. 2016, 7,
866–880.
[22] a) D. Nakashima, H. Yamamoto, J. Am, Chem. Soc. 2006, 128, 9626–
9627. For recent developments on the chiral N-sulfonyl phosphoramide
catalysis, see: b) S. Kayal, J. Kikuchi, M. Shimizu, M. Terada, ACS Catal.
2019, 9, 6846–6850; c) H. Wu, Q. Wang, J. Zhu, J. Am, Chem. Soc. 2019,
141, 11372–11377; d) J. Kikuchi, M. Terada, Angew. Chem. Int. Ed. 2019
58, 8458–8462; e) M. Shimizu, J. Kikuchi, A. Kondoh, M. Terada, Chem.
Sci. 2018, 9, 5747–5757; f) J. Jin, Y. Zhao, A. Gouranourimi, A. Ariafard,
P. W. H. Chan, J. Am, Chem. Soc. 2018, 140, 5834–5841.
[23] The results of screening for a series of catalysts are summarized in
Supporting Information (Table S1).
5
This article is protected by copyright. All rights reserved.