1668
E. Vieira et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1666–1669
Table 1
Activities (rat) of oxazoles 14a–g, 15a–g (n.m. = not measured)
Compd
R1, R2
FLIPR assay
mGluR1 EC50 (nM)
Electrophysiology
mGluR1 EC50 (nM)
In vitro clear. (rat microsomes)
Effect (%)
Effect (%)
Cl int. (ll/min/mg prot.)
1
14a
Ref.1
H, H
52
56
40
44
40
19
47
Inactive
38
100
86
63
48
50
220
202
n.m.23
90
260
102
161
n.m.
394
67
140
n.m.
131
162
n.m.
n.m.
1128
n.m.23
300
570
1191
707
n.m.
3055
1219
629
n.m.
910
42
108
61
9
rac-14b
14c
rac-14d
rac-14e
14f
14g
15°
rac-15b
15c
rac-15d
rac-15e
15f
H, 2-F
2,7-F
H, 3-F
H, 4-F
4,5-F
3,6-F
H, H
H, 2-F
2,7-F
H, 3-F
H, 4-F
4,5-F
3,6-F
34
33
18
38
50
40
26
28
32
12
n.m.
84
51
n.m.
104
57
205
n.m.
50
20
124
Inactive
21
25
Inactive
36
n.m.
568
n.m.
15g
Table 2
Pharmacokinetics of selected compounds in Wistar rats
Compd
Dose (iv/po) (mg/kg)
Cl (ml/min/kg)
Vss (L/kg)
t1/2 (h)
Brain/plasma ratio
Cmax (ng/ml)
1
10/10
10/10
3/6
5/10
1/10
60
1.7
0.67
0.9
0.99
0.43
0.32
0.91
2.46
3.7
1.5
0.8
0.5
n.m.
0.2
1330
1330
1810
1440
2070
14a
14c
rac-14e
14f
19.6
7.4
3.3
3.79
3.9
show affinities in the nanomolar range and good efficacies against
rat recombinant mGluR1 in the standard screening assay. The low-
er potencies obtained in the electrophysiological experiments may
be due to the lower receptor expression levels in this model. With
the exception of 14d, substitution at position 3 of the xanthene
moiety is generally not well tolerated. The compounds with the
best overall activity profile were further characterized with respect
to their metabolic stability in vitro as well as their PK properties in
Wistar rats. Brain to plasma ratios were determined by iv-infusion
experiments.25
Although the in vitro clearance in rat microsomes of the tri-
fluoromethyloxazole 14a is higher than for the methyl substi-
tuted oxadiazole 1, the rat in vivo clearance of 14a is much
lower, leading to a three fold increase in half-life compared to
1 (Table 2). Bioavailabilities of these compounds are in the
acceptable range (15–100%), with plasma levels ranging between
1300 and 2100 ng/ml after po administration. Intermediate vol-
umes of distribution as well as variable brain penetration are ob-
served. In comparison to the unsubstituted xanthene derivative
14a, additional fluorination of the xanthene moiety leads in most
cases to further reduction of the in vitro as well as the in vivo
clearance values. The half-life of these compounds is also mark-
edly increased. The volume of distribution is in the intermediate
range, while brain penetration seems to decrease for the fluorox-
anthene derivatives.
pounds could serve as suitable tools to further study the role of po-
sitive allosteric modulation of mGlu1 receptors in vivo.
Acknowledgments
The skillful synthetic work of Nadia Bitter,§ Martin Kuratli,§ and
Patrick Scheifele– is gratefully acknowledged.
References and notes
1. Collingridge, G. L.; Lester, R. A. Pharmacol. Rev. 1989, 40, 143.
2. Conn, P. J.; Pin, J.-P. Ann. Rev. Pharmacol. Toxicol. 1997, 37, 205.
3. Pin, J.-P.; Duvoisin, R. Neuropharmacology 1995, 34, 1.
4. Kew, J. N. C. Pharmacol. Ther. 2004, 1043, 233.
5. O’Brien, J. A.; Lemaire, W.; Chen, T.; Chang; Raymond, S. L.; Jacobson, M. A.; Ha,
S. N.; Lindsley, C. W.; Schaffhauser, H. J.; Sur, C.; Pettibone, D. J.; Conn, P. J.;
Williams, D. L., Jr. Mol. Pharmacol. 2003, 643, 731.
6. O’Brien, J. A.; Lemaire, W.; Wittmann, M.; Jacobson, M. A.; Ha, S. N.; Wisnoski,
D. D.; Lindsley, C. W.; Schaffhauser, H. J.; Rowe, B.; Sur, C.; Duggan, M. E.;
Pettibone, D. J.; Conn, P. J.; Williams, D. L., Jr. J. Pharmacol. Exp. Ther. 2004, 3092,
568.
7. Kinney, G. G.; O’Brien, J. A.; Lemaire, W.; Burno, M.; Bickel, D. J.; Clements, M.
K.; Chen, T.-B.; Wisnoski, D. D.; Lindsley, C. W.; Tiller, P. R.; Smith, S.; Jacobson,
M. A.; Sur, C.; Duggan, M. E.; Pettibone, D. J.; Conn, P. J.; Williams, D. L., Jr. J.
Pharmacol. Exp. Ther. 2005, 3131, 199.
8. Baude, A.; Nusser, Z.; Roberts, J. D.; Mulvihill, E.; McIlhinney, R. A.; Somogyi, P.
Neuron 1993, 11, 771.
9. Sillevis-Smitt, P.; Kinoshita, A.; De Leeuw, B.; Moll, W.; Coesmans, M.; Jaarsma,
D.; Henzen-Logmans, S.; Vecht, C.; De Zeeuw, C.; Sekiyama, N., et al New Engl. J.
Med. 2000, 342, 21.
10. Martin, R.; McFarland, H. F. Crit. Rev. Clin. Lab. Sci. 1995, 322, 121.
11. Aiba, A.; Kano, M.; Chen, C.; Stanton, M. E.; Fox, G. D.; Herrup, K.; Zwingman, T.
A.; Tonegawa, S. Cell 1994, 79, 377.
12. Ichise, T.; Kano, M.; Hashimoto, K.; Yanagihara, D.; Nakao, K.; Shigemoto, R.;
Katsuki, M.; Aiba, A. Science 2000, 288, 1832–1835.
Based on the potent and selective positive allosteric modulator
1, two series of trifluoromethyloxazole derivatives with improved
metabolic stability and longer half-life have been discovered. Sev-
eral derivatives with good activities at rat mGlu1 receptors have
been prepared and the compounds with the most promising
in vitro profiles were selected for further PK evaluation.
13. Knoflach, F.; Mutel, V.; Jolidon, S.; Kew, J. N. C.; Malherbe, P.; Vieira, E.;
Wichmann, J.; Kemp, J. A. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 13402.
Recently, acute oral administration of compound 14a consis-
tently improved motor performance in a rat model of experimental
autoimmune encephalomyelitis (EAE).26 With respect to their PK
profile and brain penetrating properties, several of these com-
§
Present address: Pharma Division, Discovery Research, F. Hoffmann-La Roche Ltd,
CH-4070 Basel, Switzerland.
–
Present address: Novartis AG, Basel, Switzerland.