1288
LETTER
(5) Schirlin, D.; Gerhart, F.; Hornsperger, J.M.; Hamon, M.;
Wagner, J.; Jung, M.J. J. Med. Chem. 1988, 31, 30.
Zembower, D.E.; Gilbert, J.A.; Ames, M.M. J. Med. Chem.
1993, 36, 305.
(6) Di Bari, C.; Pastore, G.; Roscigno, G.; Schechter, P.J.;
Sjoerdsma, A. Ann. Intern. Med. 1986, 105, 803. Schirlin, D.;
Ducep, J.B.; Baltzer, S.; Bey,P.; Piriou, F.; Wagner, J.;
Hornsperger, J.M.; Heydt, J.G.; Jung, M.J.; Danzin, C.;
Weiss, R.; Fischer, J.; Mitschler, A.; De Cian, A. J. Chem.
Soc. Perkin Trans. 1 1992, 1053. Bey, P.; Danzin, C.; Jung,
M.J. in: McCann, P.P.; Pegg, A.E.; Sjoerdsma, A. Inhibition
of Polyamine Metabolism: Biological Significance and Basis
for New Therapies; Ed.; Academic: Orlando, FL, 1987; p 1.
(7) Kollonitsch, J.; Perkins, L.M.; Patchett, A.A.; Doldouras,
G.A.; Marburg, S.; Duggan, D.E.; Maycock, A.L.; Aster, S.D.
Nature 1978, 274, 906. Bey, P. Ann. Chim. Fr. 1984, 9, 695.
(8) Soloshonok, V.A.; Kukhar, V.P. J. Org. Chem. USSR (Engl.
Transl.) 1990, 26, 358.
Scheme 2
Table Synthesis of -Fluoromethyl Tryptophans 3
(9) Lee, M.; Phillips, R.S. Bioorg. Med. Chem. Lett. 1991, 1, 477.
(10) Gebler, J.C.; Woodside, A.B.; Poulter, C.D. J. Am. Chem. Soc.
1992, 114, 7354.
(11) Gong, Y.; Kato, K.; Kimoto, H. Tetrahedron Lett. 1999, 40,
5743
(12) Giannis, A.; Kolter, T. Angew. Chem. Ent. Ed. Engl. 1993, 32,
1244. Schiller, W.P. In Medicinal Chemistry for the 21st
Century; Wermuth, C.G., Ed.; Oxford Blackwell Scientific
Publications, 1992; Chap. 15, 215. Marshal, G.R.; Clarc, J.D.;
Dunbar, J.B. jr., Smith, G.D.; Zabrocki, J.;Redlinski, A.S.;
Leplawy, M.T. Int. J. Pept. Protein Res. 1988, 32, 544. Hruby,
V.J.; Al-Obeidi, F.; Klazmierski, W. Biochem. J. 1990, 268,
249. Toniolo, C.; Benedetti, E. Macromolecules 1991, 24,
4004. Hanessian, S.; McNaughton-Smith, G.; Lubell, W.D.
Tetrahedron 1997, 53, 12789.
As expected, less electrophilic imines like 2d and 2e and
1 react only at elevated temperatures (80 °C). However,
yields were low (18 24%), especially when equimolar
amounts of the starting materials were used. Under these
reaction conditions, N-phenylsulfonyl-3-methylindole,
formed on heteroaromatization from 1 was the main prod-
uct of the reaction. When starting materials 2d/2e and 1
were treated in a 2:1 ratio at 60 °C and the progress of the
reaction was carefully monitored by 19F NMR spectrosco-
py, yields could be improved to 39-50%.
(13) Pires, R.; Fehn, S.; Golubev, A.S.; Winkler, D.; Burger, K.
Amino Acids 1996, 11, 301.
(14) Osipov, S.N.; Burger, K. Tetrahedron Lett. 2000, 41, 5659.
Koksch, B.; Mütze, K.; Osipov, S.N.; Golubev, A.S.; Burger,
K. Tetrahedron Lett. 2000, 41, 3825. Osipov, S.N.; Bruneau,
C.; Picquet, M.; Kolomiets, A.F.; Dixneuf, P.H. J. Chem. Soc.
Chem. Commun. 1998, 2053. Koksch, B.; Sewald, N.;
Jakubke, H.-D.; Burger, K. In Biomedical Frontiers of
Fluorine Chemistry, ACS Symposium Series 639; Ojima, I.;
McCarthy, J.R.; Welch, J.T., Ed.; 1996; p 42 and literature
cited therein.
In conclusion, we have demonstrated that the imino ene
reaction is a useful tool for the construction of -trifluo-
romethyl and -bromodifluoromethyl tryptophan deriva-
tives. Experiments to adapt this methodology for the
synthesis of a series of -fluoroalkyl substituted heterocy-
clic -amino acids as building blocks for the construction
of new types of peptidomimetics and for modification of
natural products are in progress.
(15) Welch, J.T. In Selective Fluorination in Organic and
Bioorganic Chemistry, ACS Symposium Series 456; Welch,
J.T., Ed.; 1991; p 1.
(16) Boger, D.L.; Coleman, R.S. J. Am. Chem. Soc. 1988, 110,
4798.
Acknowledgement
(17) 5-Fluoro-3-methylene indoline 1b was unknown. 1H NMR
(CDCl3) = 4.56 (t, J = 3.0 Hz, 2H, NCH2), 5.02 (t, J = 2.4
Hz, 1H, trans-C = CH), 5.34 (t, J = 3.0 Hz, 1H, cis-C = CH),
7.0-7.9 ppm (m, 8H, Ar). 19F NMR (CDCl3) = -42.4 ppm (m,
1F).
We thank the Deutsche Forschungsgemeinschaft (Innovationskol-
leg), the Stiftung Volkswagenwerk, and the Fonds der Chemischen
Industrie for financial support.
References and Notes
(18) Osipov, S.N.; Golubev, A.S.; Sewald, N.; Michel, T.;
Kolomiets, A.F.; Fokin, A.V.; Burger, K. J. Org. Chem. 1996,
61, 7521.
(1) Ma, C.; Yu, S.; He, X.; Liu, X.; Cook, J.M. Tetrahedron Lett.
2000, 41, 2781.
(2) Brown, R.R.; Ozaki, Y.; Datta, S.P.; Borden, E.C.; Sondel,
P.M.; Malone, D.S. Adv. Exp. Med. Biol. 1991, 294, 425.
Blight, A.R.; Saito, K.; Heyes, M.P. Brain Res. 1993, 632,
314.
(3) Cady, S.G.; Sono, M. Arch. Biochem. Biophys. 1991, 291,
326.
(4) Peterson, A.C.; Migawa, M.T.; Martin, M.J.; Hamaker, L.K.;
Czerwinski, K.C.; Zhang, W.; Arend, R.A.; Fisette, P.L.;
Ozaki, J.; Will. J.A.; Brown, R.R; Cook, J.M. Med. Chem.
Res. 1994, 3, 531.
(19) Osipov, S.N.; Chkanikov, N.D.; Kolomiets, A.F.; Fokin, A.V.
Bull. Acad. Sci. USSR Chem. Sect. (Engl.) 1986, 1256.
(20) General procedure for the preparation of 3:
A mixture of 3-methylidene-N-(phenylsulfonyl)indoline 1
(0.4 mmol) and N-protected imine of pyruvate 2 (0.4 mmol) in
5 mL of benzene was stirred at r.t. (80 C for 3d, e). The
solvent was removed in vacuo, and the crude product was
purified by flash chromatography (ethyl acetate/petroleum
ether). Selected data for 3a: 1H NMR (D6-acetone) = 3.32 (s,
3H, OMe), 3.61 (dAB, J = 12.4 Hz, 1H, CH2), 3.65 (dAB
,
Synlett 2001, No. 8, 1287–1289 ISSN 0936-5214 © Thieme Stuttgart · New York