Copper-Catalyzed Synthesis of Benzoxazoles
SCHEME 1. Copper-Catalyzed Intramolecular Oxidative
C-O Coupling
groups reported transition-metal-catalyzed C-N and/or C-O
coupling approaches for the synthesis of benzoxazoles using
halogenated arene precusors. For example, Glorius reported the
copper-catalyzed domino C-N/C-O bond forming reaction
between 1,2-dihaloarenes and primary amides.11 Batey and Bolm
reported copper-12 or iron-catalyzed13 intramolecular O-arylation
of 2-haloanilides for the synthesis of benzoxazoles. Although
these approaches provide an efficient access to functionalized
benzoxazoles, development of new and effective synthetic
approaches with high atom economy is still desired.
imidazoles.21 In a recent report, we also described a related
Cu(OTf)2/O2 catalytic system for intramolecular oxidative C-O
coupling of anilides in the synthesis of 2-arylbenzoxazoles
(Scheme 1).22,23 In this paper, we report a detailed investigation
of the scope and limitations of the intramolecular C-O coupling
process under an air atmosphere. We also disclose the results
of directing group assisted regiocontrolled C-H functionaliza-
tion/C-O bond formation for the efficient construction of
7-substituted benzoxazoles.
In recent years, transition metal-catalyzed C-H functional-
ization/C-heteroatom bond formation has emerged as a power-
ful method for the direct conversion of arenes and alkanes into
functionalized products.14 An intramolecular version of this
process has been successfully applied to the direct construction
of benzo-fused heterocyclic compounds from simple precusors.
In 2005, pioneering work by the Buchwald group15a afforded
efficient synthetic approaches to functionalized carbazoles by
palladium-catalyzed aromatic C-H activation followed by
intramolecular C-N bond formations.15 Subsequently, Yu and
Inamoto expanded the scope of the palladium-catalyzed C-H
functionalization/C-heteroatom bond forming reaction to in-
clude a variety of substrates thereby providing straightforward
access to other classes of benzo-fused heterocycles such as
indazoles,16 indolines,17 oxindoles,18 benzothiazoles,19 and
benzothiophenes.20 More recently, Buchwald has reported the
use of a novel Cu(OAc)2/O2 catalytic system for C-H func-
tionalization/C-N bond formation for the synthesis of benz-
Results and Discussion
Substrate Scope and Limitation. In our earlier work, a
number of 2-arylbenzoxazoles were successfully synthesized
from benzanilides utilizing 20 mol % of Cu(OTf)2 and 1 atm
of O2 gas as terminal oxidant in o-xylene at 140 °C (method
A). In a subsequent exploration, it became apparent that the
reactions in o-dichlorobenzene (o-DCB) at 160 °C under an
atmosphere of air gave superior results in most cases (method
B).
Table 1 summarizes the scope and limitation of the oxidative
C-O coupling reaction. Reactions of benzanilide 1a and
p-halogen-substituted derivatives 1b and 1c gave the corre-
sponding benzoxazoles in good yield (entries 1-3). The
reactions of substrates with a halogen or methoxy substituent
at the meta position proceeded regioselectively at the less
sterically hindered 6-position of the anilide to produce the
corresponding 5-substituted benzoxazoles 2d-f,i (entries 4-6
and 9). The m-halogen-substituted substrates 1d and 1e showed
lower reactivities than the corresponding p-halogen-substituted
substrates 1b and 1c (entries 2-5). Reaction of a substrate with
the strongly electron-withdrawing nitro group did not proceed
at all, even at elevated temperature (entry 7). Similarly, the
electron-deficient 4-pyridinyl derivative 1h failed to react and
starting material was recovered (entry 8). On the other hand,
substrates with an electron-donating alkoxy group at the 3- or
4-position gave the corresponding benzoxazoles in high yield
(entries 9 and 10). The strong dependence of the reaction
efficacy on the electronic nature of the arene ring indicates the
involvement of an electrophilic aromatic substitution process
in the cyclization reactions (see the later mechanistic discussion).
The use of method B provided an increase in yield for the
reactions of sterically demanding ortho-substituted substrates
1m and 1n (entries 13 and 14).
(9) (a) Hein, D. W.; Alheim, R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79,
427. (b) Pottorf, R. S.; Chadha, N. K.; Katkevics, M.; Ozola, V.; Suna, E.; Ghane,
H.; Regberg, T.; Player, M. R. Tetrahedron Lett. 2002, 44, 175.
(10) For stoicheometric reactions, see: (a) Varma, R. S.; Saini, R. K.; Prakash,
O. Tetrahedron Lett. 1997, 38, 2621. (b) Srivastava, R. G.; Venkataramani, P. S.
Synth. Commun. 1988, 18, 1537. For catalytic reactions, see: (c) Kawashita, Y.;
Nakamichi, N.; Kawabata, H.; Hayashi, M. Org. Lett. 2003, 5, 3713. (d) Chen,
Y.-X.; Qian, L.-F.; Zhang, W.; Han, B. Angew. Chem., Int. Ed. 2008, 47, 9330.
(11) Altenhoff, G.; Glorius, F. AdV. Synth. Catal. 2004, 346, 1661.
(12) (a) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802. (b) Viirre,
R. D.; Evindar, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452. (c) Barbero, N.;
Carril, M.; San Martin, R.; Dominguez, E. Tetrahedron 2007, 63, 10425.
(13) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10, 2665.
(14) For reviews, see: (a) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem.
2006, 4, 4041. (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. For
C-N bond formation, see: (c) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem.
Soc. 2006, 128, 9048. (d) Olson, D. E.; Du Bois, J. J. Am. Chem. Soc. 2008,
130, 11248. (e) Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562. (f)
Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274. (g)
Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316. For C-O
bond formation, see: (h) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org.
Lett. 2006, 8, 3387. (i) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am.
Chem. Soc. 2008, 130, 13285. (j) Dick, A. R.; Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2004, 126, 2300. (k) Desai, L. V.; Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2004, 126, 9542. (l) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L.
J. Org. Chem. 2008, 73, 4717. (m) Kalyani, D.; Sanford, M. S. Org. Lett. 2005,
7, 4149. For C-halogen bond formation see: (n) Mei, T.-S.; Giri, R.; Maugel,
N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215. (o) Hull, K. L.; Anani,
W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134. (p) Wan, X.; Ma, Z.;
Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi, Z. J. Am. Chem. Soc. 2006, 128,
7416. (q) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112.
(r) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. Org. Lett. 2006, 8, 5685.
(15) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc.
2005, 127, 14560. (b) Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.;
Buchwald, S. L. J. Org. Chem. 2008, 73, 7603. (c) Jordan-Hore, J. A.; Johansson,
C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130,
16184.
In contrast to the syntheses of 2-arylbenzoxazoles, the
developed procedures were not effective for the preparation of
simple 2-alkylbenzoxazoles. For example, the reaction of
pivalanilide 1o gave the desired product in only 19% yield.
Cyclohexane-substituted substrate 1p gave no desired product
and instead the aromatized product 2a was formed as a major
product.
(16) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org.
Lett. 2007, 9, 2931.
(17) Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.
(18) (a) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (b) Miura,
T.; Ito, Y.; Murakami, M. Chem. Lett. 2009, 38, 328.
(19) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10,
5147.
(21) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
(22) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.
(23) For relevant copper-mediated C-H functionalization, see: (a) Chen, X.;
Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (b)
Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.
(20) Inamoto, K.; Arai, Y.; Hiroya, K.; Doi, T. Chem. Commun. 2008, 5529.
J. Org. Chem. Vol. 74, No. 11, 2009 4273