SCHEME 2. Preparation of 5-Bromoaryldiazoacetate 9a
FIGURE 1. Structure of chiral dirhodium(II) complexes.
carbonyl-2,3-dihydrobenzofurans 6 via enantio- and diastereo-
selective C-H insertions of phenyldiazoacetates 5 catalyzed by
dirhodium tetrakis[N-phthaloyl-(S)-tert-leucinate], Rh2(S-PTTL)4
(3a) (Figure 1), wherein perfect cis selectivity and high
enantioselectivity (up to 94% ee) are achieved (eq 1).16,17 In
mixtures of cis and trans isomers with 32% ee for 10b.18,22
Davies and co-workers reported that Rh2(S-PTAD)4 (3c),23
derived from adamantylglycine, is an effective catalyst for the
reaction of 9b, providing stereoisomers 8b/10b in 72% yield
with a 14:1 preference for the cis isomer 8b and 79% ee for
8b.23a,24
5-Bromoaryldiazoacetate 9a was prepared as shown in
Scheme 2. O-Alkylation of methyl (5-bromo-2-hydroxyphenyl)-
acetate (11)25 with 4-(triisopropylsilyloxy)benzyl bromide (12)26
provided 5-bromoarylacetate 13 in 68% yield. Since attempted
direct diazo transfer to 13 with p-acetamidebenzenesulfonyl
azide and DBU in CH3CN gave decomposition products, we
used the Danheiser modification of Regitz’s diazo transfer
reaction.27 Deprotonation of 13 with LiHMDS in THF at -78
°C followed by treatment of the resulting enolate with trifluo-
roethyl trifluoroacetate afforded a trifluoroacetylated product,
which upon diazo transfer with methanesulfonyl azide and
triethylamine in CH3CN gave 5-bromoaryldiazoacetate 9a in
75% yield.
order to demonstrate the synthetic potential of this catalytic
methodology, we herein report asymmetric synthesis of (-)-
epi-conocarpan and (+)-conocarpan and a revision of the
absolute configuration of natural (-)-epi-conocarpan.
SCHEME 1. Retrosynthetic Analysis of 1 and 2
On the basis of our previous work,16 we initially explored
the intramolecular C-H insertion of 9a in toluene using 1 mol
(16) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto,
S. Org. Lett. 2002, 4, 3887–3890.
(17) Taber and Song reported the first stereocontrolled Rh(II)-mediated
cyclizations of diazo esters to form five-membered ring cyclic ethers. (a) Taber,
D. F.; Song, Y. Tetrahedron Lett. 1995, 36, 2587–2590. (b) Taber, D. F.; Song,
Y. J. Org. Chem. 1996, 61, 6706–6712. (c) Taber, D. F.; Song, Y. J. Org. Chem.
1997, 62, 6603–6607. For a review of natural product synthesis by Rh(II)-
mediated intramolecular C–H insertion, see: (d) Taber, D. F.; Stiriba, S.-E.
Chem.sEur. J. 1998, 4, 990–992.
(18) Kurosawa, W.; Kan, T.; Fukuyama, T. Synlett 2003, 1028–1030.
(19) Wada, H.; Kido, T.; Tanaka, N.; Murakami, T.; Saiki, Y.; Chen, C.-M.
Chem. Pharm. Bull. 1992, 40, 2099–2101.
Our retrosynthetic analysis of 1 and 2 is outlined in Scheme
1. It has been documented that thermodynamically less-stable
cis-2-(4-hydroxyphenyl)-2,3-dihydrobezofurans are epimerized
to trans isomers by treatment with an acid (TFA in CH2Cl2)18
or a base (Na2CO3 in MeOH).19 Thus, synthesis of 1 would be
achieved by epimerization at the C2 stereocenter of 2. We
carefully selected the TIPS ether as the protecting group for
the phenolic moiety, reasoning that a TIPS-protected p-cresol
is stable under basic conditions.20 It was anticipated that a
propenyl group at C5 would be introduced by a Suzuki-Miyaura
coupling of 5-bromo-2,3-dihydrobenzofuran 8a with propenyl-
boronic acid (7).21 As mentioned above,16 we envisioned that
Rh2(S-PTTL)4-catalyzed C-H insertion of methyl [5-bromo-
2-(4-triisopropylsilyloxybenzyloxy)phenyl]diazoacetate (9a) would
provide cis-(2R,3S)-5-bromo-2,3-dihydrobenzofuran 8a. C-H
insertion reactions of 5-bromoaryldiazoacetates catalyzed by
chiral dirhodium(II) complexes have already been reported by
two research groups (eq 2). Fukuyama and co-workers dem-
(20) Davies, J. S.; Higginbotham, C. L.; Tremeer, E. J.; Brown, C.; Treadgold,
R. C. J. Chem. Soc., Perkin Trans. 1 1992, 3043–3048.
(21) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457–2483.
(22) Fukuyama and co-workers reported the total synthesis of (-)-ephedradine
A, wherein an optically active trans-2,3-dihydrobenzofuran intermediate was
elaborated by Rh2(S-DOSP)4-catalyzed C–H insertion of 5-bromoaryldiazoacetate
containing the pyrrolidinyl (S)-lactamide chiral auxiliary. (a) Kurosawa, W.; Kan,
T.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 1028–1030. (b) Kurosawa, W.;
Kobayashi, H.; Kan, T.; Fukuyama, T. Tetrahedron 2004, 60, 9615–9628.
(23) (a) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437–
3440. (b) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 9,
2625–2628. (c) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129,
10312–10313. (d) Denton, J. R.; Cheng, K.; Davies, H. M. L. Chem. Commun.
2008, 1238–1240. (e) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787–
790. (f) Nadeau, E.; Li, Z.; Morton, D.; Davies, H. M. L. Synlett 2009, 151–
154. (g) Ventura, D. L.; Li, Z.; Coleman, M. G.; Davies, H. M. L. Tetrahedron
2009, 65, 3052–3061.
(24) Davies and co-workers reported that enantioselective intramolecular C–
H insertion of aryldiazoacetates catalyzed by Rh2(S-DOSP)4 (4) afforded 2,2-
disubstituted 2,3-dihydrobenzofurans in up to 94% ee. Davies, H. M. L.; Grazini,
M. V. A.; Aouad, E. Org. Lett. 2001, 3, 1475–1477.
(25) Greenspan, P. D.; Fujimoto, R. A.; Marshall, P. J.; Raychaudhuri, A.;
Lipson, K. E.; Zhou, H.; Doti, R. A.; Coppa, D. E.; Zhu, L.; Pelletier, R.; Uziel-
Fusi, S.; Jackson, R. H.; Chin, M. H.; Kotyuk, B. L.; Fitt, J. J. J. Med. Chem.
1999, 42, 164–172.
(26) Ohshima, T.; Gnanadesikan, V.; Shibuguchi, T.; Fukuta, Y.; Nemoto,
T.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 11206–11207.
(27) (a) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.; Park, S. Z. J. Org.
Chem. 1990, 55, 1959–1964. (b) Danheiser, R. L.; Miller, R. F.; Brisbois, R. G.
Org. Synth. 1996, 73, 134–143.
onstrated that the reaction of 5-bromoaryldiazoacetate 9b
catalyzed by Rh2(S-DOSP)4 (4) afforded the corresponding
5-bromo-2,3-dihydrobenzofurans 8b/10b in 72% yield as 3:2-5:1
J. Org. Chem. Vol. 74, No. 11, 2009 4419