SCHEME 1. Retrosynthetic Analysis for (+)-Angelmarin
Total Synthesis of (+)-Angelmarin
Jakob Magolan and Mark J. Coster*
Eskitis Institute for Cell and Molecular Therapies, Griffith
UniVersity, Nathan 4111, Queensland, Australia
m.coster@griffith.edu.au
ReceiVed March 25, 2009
nutrient-deprived medium while showing no activity in nutrient-
sufficient medium.5 Two of these compounds, kigamicin D5a
and arctigenin,5c were further demonstrated to suppress tumor
growth of pancreatic cancer cell lines in nude mice.
An efficient 8-step enantioselective total synthesis of (+)-
angelmarin, starting from commercially available umbellif-
erone, has been achieved. Key reactions include olefin cross-
metathesis and a Shi epoxidation-cyclization sequence.
In an effort to identify new antiausterity natural products,
Kadota and co-workers reported the structure of (+)-angelmarin
(1, Scheme 1), isolated by bioassay-guided fractionation of the
CH2Cl2-extract of Angelica pubescens.5b Angelmarin (1) shows
100% preferential cytotoxicity (PC100) against PANC-1 cells at
0.01 µg/mL. The absolute configuration of this new natural
product was assigned through analysis of its circular dichroism
spectrum and comparison of specific rotation values for its
saponification product to that reported for columbianetin (2), a
compound identified in 1964 from hydrolysis of two related
natural products from Lomatium columbianum.6
The potent bioactivity of 1 in this unique therapeutic area
motivated us to develop an efficient and scalable total synthesis
that would allow ready access to structural analogues for
biological evaluation and the elucidation of structure-activity
relationships (SAR). Our retrosynthetic approach relies on initial
disconnection of 1 across the ester to give columbianetin (2)
and p-hydroxycinnamic acid (Scheme 1). In turn, 2 would be
derived from epoxide 3, via base-mediated 5-exo-tet cyclization,
and the latter compound would be obtained by asymmetric
epoxidation of osthenol (4), using the Shi protocol.7
Cancer cells within rapidly growing tumors are often subject
to low oxygen and nutrient supply,1 and show remarkable
tolerance to such starvation conditions.2 Pancreatic cancer is
the most deadly of human malignancies, with the lowest 5-year
survival rates of all cancers (generally <5%). It is unresponsive
to most current chemotherapeutic agents3 and displays an
astonishing tolerance to extreme nutrient-deprivation over
prolonged periods of time.2a
An anti-austerity therapeutic strategy, targeting this metabolic
adaptation of cancer cells, was proposed in 2000 by Esumi and
co-workers.2a Through the development of an assay method for
antiausterity activity,4 several natural products have been
identified with preferential cytotoxicity to PANC-1 cells in
(1) (a) Vaupel, P.; Kallinowski, F.; Okunieff, P. Cancer Res. 1989, 49, 6449.
(b) Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R. K. Nat. Med. 1997, 3, 177.
(2) (a) Izuishi, K.; Kato, K.; Ogura, T.; Kinoshita, T.; Esumi, H. Cancer
Res. 2000, 60, 6201. (b) Esumi, H.; Izuishi, K.; Kato, K.; Hashimoto, K.;
Kurashima, Y.; Kishimoto, A.; Ogura, T.; Ozawa, T. J. Biol. Chem. 2002, 277,
32791.
(3) Li, D.; Xie, K.; Wolff, R.; Abbruzzese, J. L. Lancet 2004, 363, 1049.
(4) Esumi, H.; Lu, J.; Kurashima, Y.; Hanaoka, T. Cancer Sci. 2004, 95,
685.
(5) (a) Lu, J.; Kunimoto, S.; Yamazaki, Y.; Kaminishi, M.; Esumi, H. Cancer
Sci. 2004, 95, 547. (b) Awale, S.; Nakashima, E. M. N.; Kalauni, S. K.; Tezuka,
Y.; Kurashima, Y.; Lu, J.; Esumi, H.; Kadota, S. Bioorg. Med. Chem. Lett. 2006,
16, 581. (c) Awale, S.; Lu, J.; Kalauni, S. K.; Kurashima, Y.; Tezuka, Y.; Kadota,
S.; Esumi, H. Cancer Res. 2006, 66, 1751. (d) Zaidi, S. F. H.; Awale, S.; Kalauni,
S. K.; Tezuka, Y.; Esumi, H.; Kadota, S. Planta Med. 2006, 72, 1231. (e) Win,
N. N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. J. Nat. Prod. 2007, 70,
1582. (f) Awale, S.; Li, F.; Onozuka, H.; Esumi, H.; Tezuka, Y.; Kadota, S.
Bioorg. Med. Chem. 2008, 16, 181. (g) Win, N. N.; Awale, S.; Esumi, H.; Tezuka,
Y.; Kadota, S. Bioorg. Med. Chem. Lett. 2008, 18, 4688. (h) Win, N. N.; Awale,
S.; Esumi, H.; Tezuka, Y.; Kadota, S. Bioorg. Med. Chem. 2008, 16, 8653. (i)
Win, N. N.; Awale, S.; Esumi, H.; Tezuka, Y.; Kadota, S. Chem. Pharm. Bull.
2008, 56, 491.
Racemic columbianetin has previously been prepared by
Shipchandler (1970),8 Steck (1971),9 and Franke (1971).10 The
syntheses of Steck and Franke utilized a base-mediated 5-exo-
tet cyclization of a phenolic epoxide (3) to achieve the
dihydrobenzofuran framework. Franke’s synthesis of rac-
columbianetin was the most efficient to date, providing 2 in 5
steps from commercially available substrates, cf. Shipchandler
(6) Willette, R. E.; Soine, T. O. J. Pharm. Sci. 1964, 275.
(7) For a recent review, see: Wong, O. A.; Shi, Y. Chem. ReV. 2008, 108,
3958.
(8) Shipchandler, M.; Soine, T. O.; Gupta, P. K. J. Pharm. Sci. 1970, 59,
67.
(9) Steck, W. Can. J. Chem. 1971, 49, 1197.
(10) Bohlmann, F.; Franke, H. Chem. Ber. 1971, 104, 3229.
10.1021/jo900613u CCC: $40.75 2009 American Chemical Society
Published on Web 05/21/2009
J. Org. Chem. 2009, 74, 5083–5086 5083