approaches to functionalized organic intermediates, we recently
became interested in the use of alternative nucleophilic com-
ponents to the commonly used arene ring. In particular, we
sought to investigate the use of vinyl chlorides as the nucleo-
philic component in intramolecular F-C acylation reactions.
Inspection of the literature revealed only a few isolated examples
of vinyl chloride-based intramolecular F-C acylations,3 indicat-
ing good potential to expand the scope of this reaction and
develop more generally applicable procedures. In this Note, we
disclose the results from our work in this area, which demon-
strate the utility of intramolecular F-C acylations of vinyl
chlorides for the synthesis of various 3,5-disubstituted cyclo-
pentenone derivatives. These functionalized prochiral intermedi-
ates4 have potential as versatile precursors for various types of
asymmetric catalysis, such as asymmetric conjugate reduction5
and asymmetric conjugate additions to generate quaternary
stereocenters.6
A General Method for the Synthesis of
3,5-Diarylcyclopentenones via Friedel-Crafts
Acylation of Vinyl Chlorides
Yingju Xu,* Mark McLaughlin,* Cheng-yi Chen,
Robert A. Reamer, Peter G. Dormer, and Ian W. Davies
Department of Process Research, Merck Research
Laboratories, Merck & Co., Inc., Rahway, New Jersey 07065
yingju_xu@merck.com; mark_mclaughlin@merck.com
ReceiVed April 2, 2009
Figure 1 depicts our general approach for the preparation of
3,5-diarylcyclopentenones. Given the ready availability of
functionalized arylacetic acids, we envisaged these to be
appropriate starting materials for the construction of a range of
intramolecular F-C cyclization substrates. Carboxylic acid
activation and cyclization under typical Lewis acid conditions
was anticipated to provide 3-chlorocyclopentenone intermediates
that would be amenable to further elaboration via the reactivity
conferred by the vinylogous acid chloride functional group.
Synthesis of the F-C cyclization substrates was accomplished
via alkylation of aryl acetic esters (1a) or, more directly, via
alkylation of the dianion derived from arylacetic acids (1b)7
(Scheme 1). As shown, treatment of a mixture of arylacetic ester
and 2-chloro-3-iodopropene (2) in THF with KHMDS results
A general approach for the synthesis of 3,5-diarylcyclopen-
tenones was developed. Key aspects of this approach are
the intramolecular Friedel-Crafts-type cyclization of vinyl
chlorides and subsequent Pd-catalyzed cross-coupling reac-
tions. The requisite vinyl chloride-bearing arylacetic acid
precursors are readily available by straightforward alkylation
of arylacetic acid esters and undergo cyclization to yield
3-chloro-5-aryl-2-cyclopentenones when treated with AlCl3.
The vinylogous acid chloride functionality present in these
immediate products allows for further elaboration via Pd-
catalyzed cross-coupling chemistry, leading to a diverse array
of products.
(3) (a) Drouin, J.; Conia, J. M. Synth. Commun. 1982, 12, 81. (b) Drouin, J.;
Leyendecker, F.; Conia, J. M. Tetrahedron 1980, 36, 1203. (c) Fraser, F. A.;
Proctor, G. R.; Redpath, J. J. Chem. Soc., Perkin Trans. I 1992, 445. For other
utility of chloro olefin see: (d) Lansbury, P. T. Acc. Chem. Res. 1972, 5, 311.
(4) For selected synthesis of substituted 2-cyclopentenone see: (a) Shi, X.;
Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802. (b) Zhang, L.;
Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (c) Arcadi, A.; Marinelli, F.; Pini,
E.; Rossi, E. Tetrahedron Lett. 1996, 37, 3387. (d) Prempree, P.; Siwapinyoyos,
T.; Thebtaranonth, C.; Thebtaranonth, Y. Tetrahedron Lett. 1980, 21, 1169. (e)
Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
5881. Through [4+1] annulation see: (f) Moser, W. H.; Feltes, L. A.; Sun, L.;
Giese, M. W.; Farrell, R. W. J. Org. Chem. 2006, 71, 6542. (g) Davie, C. P.;
Danheiser, R. L. Angew. Chem., Int. Ed. 2005, 44, 5867. (h) Kurahashi, T.; Wu,
Y.-T.; Meindl, K.; Ru¨hl, S.; Meijere, A. Synlett. 2005, 5, 805. For zirconium-
catalyzed see: (i) Takahashi, T.; Huo, S.; Hara, R.; Noguchi, Y.; Nakajima, K;
Sun, W. J. Am. Chem. Soc. 1999, 121, 1094. (j) Xi, Z.; Fan, H.; Mito, S.;
Takahashi, T. J. Organomet. Chem. 2003, 682, 108. (k) Yuki, T.; Hashimoto,
M.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1993, 58, 4497. For Pd-catalyzed
see: (l) Tsukada, N.; Sugawara, S.; Okuzawa, T.; Inoue, Y. Synthesis 2006, 18,
3003. For rhodium(I)-catalyzed see: (m) Murakami, M.; Takahashi, K.; Amii,
H.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 9307. (n) Matsuda, I.; Ishibashi, H.; Ii,
N. Tetrahedron Lett. 1995, 36, 241. (o) Matsuda, I.; Fukuta, Y.; Tsuchihashi,
T.; Nagashima, H.; Itoh, K. Organometallics 1997, 16, 4327. Through iron
complex see: (p) Stokes, H. L.; Ni, L. M.; Belot, J. A.; Welker, M. E. J.
Organomet. Chem. 1995, 487, 95. (q) Ni, L.; Belot, J. A.; Welker, M. E.
Tetraohedron Lett. 1992, 33, 177. For Cobalt-catalyzed syntheses see: (r) Krafft,
M. E. J. Am. Chem. Soc. 1988, 110, 968. (s) Rao, M. L. N.; Periasamy, M.
Organomettallics 1996, 15, 442. (t) Khand, I. U.; Knox, G. R.; Pauson, P. L.;
Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin Trans 1 1973, 977.
(5) (a) Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 2892.
(b) Chae, J.; Yun, J.; Buchwald, S. L. Org. Lett. 2004, 6, 4809. (c) Yun, J.;
Buchwald, S. L. Org. Lett. 2001, 3, 1129.
The Friedel-Crafts (F-C) acylation reaction represents a
powerful method to introduce new carbon-carbon bonds onto
aromatic compounds and other unsaturated species.1 Acylation
of arenes is a thoroughly established technique for the synthesis
of aromatic ketones. Intramolecular F-C reactions have also
proven highly useful in the formation of various ring systems.2
As part of a continuing effort to develop simple and efficient
(1) Friedel, C.; Crafts, J. M. Compt. Rend. 1877, 84, 1392 and 1450. For
reviews see: (a) Price, C. C. Org. React. 1946, 3, 1. (b) Groves, J. K. Chem.
Soc. ReV. 1972, 1, 73. (c) Heaney, H. ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2, p 733. (d)
Gore, P. H. Chem. Ind. 1974, 18, 727. (e) Olah, G. A. Friedel-Crafts Chemistry;
Wiley: New York, 1973. (f) Pearson, D. E.; Buehler, C. A. Synthesis 1972, 10,
533. For new catalysts see: (g) Kangani, C. O.; Billy, W. D. Org. Lett. 2008,
10, 2645. (h) Sartori, G.; Maggi, R. Chem. ReV. 2006, 106, 1077. For
enantioselective F-C reactions see:(i) Majer, J.; Kwiatkowski, P.; Jurczak, J.
Org. Lett. 2008, 10, 2955. (j) Poulsen, T. B.; Jørgensen, K. A. Chem. ReV. 2008,
108, 2903. (k) Jørgensen, K. A. Synthesis 2003, 1117. (l) Bandini, M.; Melloni,
A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
(2) (a) Franck-Neumann, M.; Miesch-Gross, L.; Nass, O. Tetrahedron Lett.
1996, 37, 8763. (b) Waser, M.; Falk, H. Monatsh. Chem. 2005, 136, 609. For
reviews see: (c) Heaney, H. ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2, p 753. (d) Sethna,
S Friedel-Crafts and Related Reactions, Olah, G. A., Ed.; Interscience: New
York, 1964; Vol. 3, p 911. (e) Gore, P. H. Chem. ReV. 1955, 55, 229–281.
(6) (a) May, T. L.; Brown, M. K.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2008, 47, 7358. (b) Vuagnoux-d’Augustin, M.; Kehrli, S.; Alexakis, A. Synlett
2007, 13, 2057. (c) Zezschwitz, P. Synthesis 2008, 12, 1809.
5100 J. Org. Chem. 2009, 74, 5100–5103
10.1021/jo900696k CCC: $40.75 2009 American Chemical Society
Published on Web 06/01/2009