Article
Organometallics, Vol. 28, No. 14, 2009 4049
weight polyethylene, are capable of homooligomerization
and copolymerization of 1-olefins (also with polar functional
groups providing these are separated from the vinyl group by
a spacer), and polymerize in aqueous emulsion to afford
unique nanoparticles. The degree of branching of ethylene
homopolymers, and thus their crystallinity and thermal
properties, can be varied over a wide range by remote
substituents.7
In studies of catalytic polymerizations, neutral or cationic
Ni(II)- and Pd(II)-methyl complexes represent versatile
well-defined single-component precursors for catalysis and
mechanistic studies. Convenient and increasingly utilized
reagents for the preparation of neutral M(II)-Me complexes
in general are [(tmeda)M(CH3)2]10,11 (M=Ni, Pd; tmeda=
N,N,N0,N0-tetramethylethylenediamine). Reaction with a
stoichiometric amount of a monoanionic bidentate ligand
in its protonated form, e.g., of free salicylaldimine, (N,O)H,
with [(tmeda)Ni(CH3)2], results in protonation of one M(II)-
methyl moiety to methane and formation of [(N,O)NiCH3-
(tmeda)].6h,p,q,7c-m,12-14 The tmeda ligand is relatively la-
bile, and in the presence of other coordinating species L, the
corresponding complexes [(N,O)NiCH3(L)] can be formed
(e.g., L= pyridine, phosphines, primary amines).7 Due to
their reactivity and lability, the tmeda species are also
precursors to highly active catalysts.7g,14a However, the
nature and properties of the [(N,O)NiCH3(tmeda)] species
are unclear. We now report the results of comprehensive
NMR studies of this issue.
(6) (a) Braunstein, P.; Pietsch, J.; Chauvin, Y.; Mercier, S.; Saussine,
L.; DeCian, A.; Fischer, J. J. Chem. Soc., Dalton Trans. 1996, 3571–
3574. (b) Braunstein, P.; Pietsch, J.; Chauvin, Y.; DeCian, A.; Fischer, J.
J. Organomet. Chem. 1997, 529, 387–393. (c) Pietsch, J.; Braunstein, P.;
Chauvin, Y. New J. Chem. 1998, 22, 467–472. (d) Rachita, M. J.; Huff,
R. L.; Bennett, J. L.; Brookhart, M. J. Polym. Sci. Part A 2000, 38, 4627–
4640. (e) Hicks, F. A.; Brookhart, M. Organometallics 2001, 20, 3217–
3219. (f) Soula, R.; Broyer, J. P.; Llauro, M. F.; Tomov, A.; Spitz, R.;
Claverie, J.; Drujon, X.; Malinge, J.; Saudemont, T. Macromolecules
2001, 34, 2438–2442. (g) Gibson, V. C.; Tomov, A.; White, A. J. P.;
Results and Discussion
Reactions of [(tmeda)Ni(CH3)2] with salicylaldimines (N,O)H
proceed straightforwardly and intrinsically introduce the weakly
coordinating bidentate ligand N,N,N0,N0-tetramethylethylene-
diamine, tmeda, to the product complexes [(N,O)NiCH3(tme-
da)] (eq 1). The particular salicylaldimine (N,O)H = 2,6-(3,5-
(F3C)2C6H3)2C6H3-NdCH-(3,5-I2-2-OH-C6H2) was chosen for
this study, as Ni(II) complexes of this ligand are long-
lived, robust, and very active precatalysts for ethylene polymer-
ization.5e,5f,7h,13
€
Williams, D. J. Chem. Commun. 2001, 719–720. (h) Schroder, D. L.;
Keim, W.; Zuideveld, M. A.; Mecking, S. Macromolecules 2002, 35,
6071–6073. (i) Hicks, F. A.; Jenkins, J. C.; Brookhart, M. Organometal-
€
lics 2003, 22, 3533–3545. (j) Heinicke, J.; Kohler, M.; Peulecke, N.;
He, M.; Kindermann, M. K.; Keim, W.; Fink, G. Chem.;Eur. J. 2003,
9, 6093–6107. (k) Jenkins, J. C.; Brookhart, M. J. Am. Chem. Soc. 2004,
126, 5827–5842. (l) Speiser, F.; Braunstein, P.; Saussine, L. Acc. Chem.
Res. 2005, 38, 784–793. (m) Zhang, L.; Brookhart, M.; White, P. S.
ꢀ
Organometallics 2006, 25, 1868–1874. (n) Kuhn, P.; Semeril, D.;
Jeunesse, C.; Matt, D.; Neuburger, M.; Mota, A. Chem.;Eur. J.
2006, 12, 5210–5219. (o) Nowack, R. J.; Hearley, A. K.; Rieger, B. Z.
Anorg. Allg. Chem. 2005, 631, 2775–2781. (p) Yu, S.-M.; Berkefeld, A.;
::
€
Gottker-Schnetmann, I.; Muller, G.; Mecking, S. Macromolecules 2007,
40, 421–428. (q) Guironnet, D.; Runzi, T.; Gottker-Schnetmann, I.;
::
€
Mecking, S. Chem. Commun. 2008, 4965–4967. (r) Lavanant, L.;
Rodriguez, A.-S.; Kirillov, E.; Carpentier, J.-F.; Jordan, R. F. Organo-
metallics 2008, 27, 2107–2117. (s) Rodriguez, B. A.; Delferro, M.;
Marks, T. J. Organometallics 2008, 27, 2166–2168. (t) Azoulay, J. D.;
Itigaki, K.; Wu, G.; Bazan, G. C. Organometallics 2008, 27, 2273–2280.
(u) Zhou, X.; Bontemps, S.; Jordan, R. F. Organometallics 2008, 27,
4821–4824.
(7) (a) Johnson, L. K.; Bennett, A. M. A.; Ittel, S. D.; Wang, L.;
Parthasarathy, A.; Hauptman, E.; Simpson, R. D.; Feldman, J.; Cough-
lin, E. B. (DuPont) WO98/30609, 1998. (b) Wang, C.; Friedrich, S.;
Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day, M. W.
Organometallics 1998, 17, 3149–3151. (c) Younkin, T. R.; Connor, E. F.;
Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A.
Science 2000, 287, 460–462. (d) Connor, E. F.; Younkin, T. R.; Hen-
derson, J. I.; Hwang, S.; Grubbs, R. H.; Roberts, W. P.; Litzau, J. J. J.
Polym. Sci. Part A 2002, 40, 2842–2854. (e) Connor, E. F.; Younkin, T.
R.; Henderson, J. I.; Waltman, A. W.; Grubbs, R. H. Chem. Commun.
2003, 2272–2273. (f) Darensbourg, D. J.; Ortiz, C. G.; Yarbrough, J. C.
Inorg. Chem. 2003, 42, 6915–6922. (g) Bastero, A.; Kolb, L.; Wehrmann,
Polymerization experiments carried out at precatalyst
loadings of 1 μmol of 1-tmeda in toluene solution at 20 °C
revealed that overall catalytic activities (measured in units
of mol(C2H4) mol(1-tmeda)-1 h-1= TO h-1) are nearly
independent of the ethylene concentration in the pressure
range from 10 bar (3.0 ꢀ 104 TO h-1) to 30 bar (3.4 ꢀ
104 TO h-1). This indicates that under these conditions
tmeda does not compete with monomer binding to the metal
center. A highly linear semicrystalline polyethylene is ob-
tained, with, for example, a molecular weight of Mn=1.5 ꢀ
105 g mol-1 (Mw/Mn=2.5, ca. 50% crystallinity; prepared at
30 bar).
€
P.; Bauers, F. M.; Gottker gen. Schnetmann, I.; Monteil, V.; Thomann,
R.; Chowdhry, M. M.; Mecking, S. Polym. Mat. Sci. Eng. 2004, 90, 740–
1H NMR Spectroscopic Studies of 1-tmeda. Two Ni(II)-
methyl species coexist in a close to 1:1 ratio in dmso-d6
solutions of 1-tmeda at ambient temperatures. Characteristic
€
741. (h) Zuideveld, M. A.; Wehrmann, P.; Rohr, C.; Mecking, S. Angew.
Chem., Int. Ed. 2004, 43, 869–873. (i) Wehrmann, P.; Mecking, S.
Macromolecules 2006, 39, 5963–5964. (j) Wehrmann, P.; Zuideveld,
M. A.; Thomann, R.; Mecking, S. Macromolecules 2006, 39, 5995–
€
6002. (k) Gottker Schnetmann, I.; Wehrmann, P.; Rohr, C.;
Mecking, S. Organometallics 2007, 26, 2348–2362. (l) Bastero, A.;
€
€
(10) Kaschube, W.; Porschke, K. R.; Wilke, G. J. Organomet. Chem.
1988, 355, 525–532.
(11) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.;
van Koten, G. Organometallics 1989, 8, 2907–2917.
(12) For [(Me3P)2NiMe(OMe)] as a precursor see: Klein, H.-F.
Inorg. Chim. Acta 1996, 248, 111–114.
€
€
Gottker-Schnetmann, I.; Rohr, C.; Mecking, S. Adv. Synth. Catal.
2007, 349, 2307–2316. (m) Wehrmann, P.; Mecking, S. Organometallics
2008, 27, 1399-1408. Also see: (n) Brasse, M.; Campora, J.; Palma, P.;
Alvarez, E.; Cruz, V.; Ramos, J.; Reyes, M. L. Organometallics 2008, 27,
4711–4723.
(8) For early related work on phosphino enolate catalyst systems see:
(a) Keim, W.; Kowaldt, F. H.; Goddard, R.; Kruger, C. Angew. Chem.,
(13) Berkefeld, A.; Mecking, S. J. Am. Chem. Soc. 2009, 131, 1565–
1574.
::
Int. Ed. Engl. 1978, 17, 466–467. (b) Ostoja Starzewski, K. A.; Witte, J.
Angew. Chem., Int. Ed. Engl. 1985, 24, 599–601. (c) Klabunde, U.; Ittel,
S. D. J. Mol. Catal. 1987, 41, 123–134.
(9) For computational studies see: (a) Chan, M. S. W.; Deng, L.;
Ziegler, T. Organometallics 2000, 19, 2741–2750. (b) Zeller, A.; Strass-
ner, T. J. Organomet. Chem. 2006, 691, 4379–4385.
(14) For a corresponding reaction of [(tmeda)PdMe2] with salicylal-
dimine: ref 7f. With (zwitterionic) phosphinosulfonic acids, (P,O)H:
(a) Skupov, K. M.; Marella, P. R.; Simard, M.; Yap, G. P. A.; Allen, N;
Conner, D.; Goodall, B. L.; Claverie, J. P. Macromol. Rapid Commun.
2007, 28, 2033–2038. (b) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F.
Organometallics 2007, 26, 6624–6635 and ref 4a.