10.1002/anie.202110019
Angewandte Chemie International Edition
RESEARCH ARTICLE
[10] Y. B. Kim, J. Won, J. Lee, J. Kim, B. Zhou, J.-W. Park, M.-H. Baik, S.
Chang, ACS Catal. 2021, 11, 3067–3072.
of substrates, including terpene and steroid derivatives. We
anticipate that this reaction will be broadly applicable to introduce
the amino group in a medicinal chemistry context.
[11] Y. Hwang, Y. Park, S. Chang, Chem. Eur. J. 2017, 23, 11147–11152.
[12] (a) M. Lee, H. Jung, D. Kim, J.-W. Park, S. Chang, J. Am. Chem. Soc.
2020, 142, 11999–12004. (b) X. Dong, P. Ma, T. Zhang, H. B. Jalani, G.
Li, H. Lu, J. Org. Chem. 2020, 85, 13096–13107. (c) J. Lee, S. Jin, D.
Kim, S. H. Hong, S. Chang, J. Am. Chem. Soc. 2021, 143, 5191–5200.
[13] (a) T. Knecht, S. Mondal, J.-H. Ye, M. Das, F. Glorius, Angew. Chem. Int.
Ed. 2019, 58, 7117–7121. (b) J. S. Burman, R. J. Harris, C. M. B. Farr,
J. Basca, S. B. Blakey, ACS Catal. 2019, 9, 5474–5479. (c) P. Sihag, M.
Jeganmohan, J. Org. Chem. 2019, 84, 13053–13064. (d) H. Lee, T.
Rovis, Nat. Chem. 2020, 12, 725–731.
Acknowledgements
This work was financially supported by Novartis AG and the
University of Basel. We thank Prof. Dr. D. Häussinger (University
of Basel) for NMR experiments, S. Mittelheisser and Dr. M. Pfeffer
(University of Basel) for MS analyses, and Dr. P. Hoehn (Novartis
Pharma AG) for DSC experiments.
[14] The deprotection of the p-nitrophenyldifluoroacetamide group was
benchmarked against those of the more common trifluoroacetamide and
pivalamide groups. See the supporting information for details (Table S6).
[15] J. Park, J. Lee, S. Chang, Angew. Chem. Int. Ed. 2017, 56, 4256–4260.
Keywords: amidation • 1,2-amino alcohol • C–H activation •
dioxazolone • iridium
[1]
(a) D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96, 835–876.
(b) P. O’Brien, Angew. Chem. Int. Ed. 1999, 38, 326–329. (c) S. C.
Bergmeier, Tetrahedron 2000, 56, 2561–2576. (d) J. B. Sweeney, Chem.
Soc. Rev. 2002, 31, 247–258. (e) S. Kobayashi, Y. Mori, J. S. Fossey, M.
M. Salter, Chem. Rev. 2011, 111, 2626–2704. (f) O. K. Karjalainen, A. M.
P. Koskinen, Org. Biomol. Chem. 2012, 10, 4311–4326. (g) T. Sehl, Z.
Maugeri, D. Rother, J. Mol. Catal. B-Enzym. 2015, 114, 65–71.
(a) A. R. Dick, M. S. Sanford, Tetrahedron 2006, 62, 2439–2463. (b) F.
Collet, R. H. Dodd, P. Dauban, Chem. Commun. 2009, 5061–5074. (c)
F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926–1936.
(d) J. L. Roizen, M. E. Harvey, J. Du Bois, Acc. Chem. Res. 2012, 45,
911–922. (e) J. L. Jeffrey, R. Sarpong, Chem. Sci. 2013, 4, 4092. (f) Y.
Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247–9301. (g) S. Y.
Hong, Y. Hwang, M. Lee, S. Chang, Acc. Chem. Res. 2021, 54, 2683–
2700.
[2]
[3]
[4]
Seminal work: Z. Ren, F. Mo, G. Dong, J. Am. Chem. Soc. 2012, 134,
16991–16994.
Metal-catalyzed exo-directed (sulfon)amidation with oximes: (a) T. Kang,
H. Kim, J. G. Kim, S. Chang, Chem. Commun. 2014, 50, 12073–12075.
(b) X. Huang, Y. Wang, J. Lan, J. You, Angew. Chem. Int. Ed. 2015, 54,
9404–9408. (c) Y. Dong, G. Liu, J. Org. Chem. 2017, 82, 3864–3872. (d)
Y. Dong, J. Chen, H. Xu, Chem. Commun. 2018, 54, 11096–11099. (e)
Liu, P. Xie, J. Zhao, J. Wang, M. Wang, Y. Jiang, J. Chang, X. Li, Angew.
Chem. Int. Ed. 2021, 60, 8396–8400.
[5]
Metal-catalyzed endo-directed (sulfon)amidation with oximes: (a) H.-Y.
Thu, W.-Y. Yu, C.-M. Che, J. Am. Chem. Soc. 2006, 128, 9048–9049.
(b) T. Kang, Y. Kim, D. Lee, Z. Wang, S. Chang, J. Am. Chem. Soc. 2014,
136, 4141–4144. (c) H. Wang, G. Tang, X. Li, Angew. Chem. Int. Ed.
2015, 54, 13049–13052. (d) H. Kim, G. Park, J. Park, S. Chang, ACS
Catal. 2016, 6, 5922–5929. (e) T. Zhang, X. Hu, X. Dong, G. Li, H. Lu,
Org. Lett. 2018, 20, 6260–6264.
[6]
[7]
(a) Y. Park, J. Heo, M.-H. Baik, S. Chang, J. Am. Chem. Soc. 2016, 138,
14020–14029. (b) N. Ma, Z. Liu, J. Huang, Y. Dang, Org. Biomol. Chem.
2021, 19, 3850–3858.
(a) 3-Perfluoroalkyl-1,4,2-dioxazol-5-ones: W. J. Middleton, J. Org.
Chem. 1983, 48, 3845–3847. (b) Trifluoroacetyliminoiodane: D. Mansuy,
J.-P. Mahy, A. Dureault, G. Bedi, P. Battioni, J. Chem. Soc., Chem.
Commun. 1984, 1161–1163.
[8]
[9]
(a) N. Barsu, A. Rahman, M. Sen, B. Sundararaju, Chem. Eur. J. 2016,
22, 9135–9138. (b) P. W. Tan, A. M. Mak, M. B. Sullivan, D. J. Dixon, J.
Seayad, Angew. Chem. Int. Ed. 2017, 56, 16550–16554. (c) S.
Fukagawa, Y. Kato, R. Tanaka, M. Kojima, T. Yoshino, S. Matsunaga,
Angew. Chem. Int. Ed. 2019, 58, 1153–1157. (d) D. Sekine, K. Ikeda, S.
Fukagawa, M. Kojima, T. Yoshino, S. Matsunaga, Organometallics 2019,
38, 3921–3926.
(a) Q. Ma, X. Yu, R. Lai, S. Lv, W. Dai, C. Zhang, X. Wang, Q. Wang, Y.
Wu, ChemSusChem 2018, 11, 3672–3678. (b) H. Shi, D. J. Dixon, Chem.
Sci. 2019, 10, 3733–3737. (c) S. Fukagawa, M. Kojima, T. Yoshino, S.
Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 18154–18158.
8
This article is protected by copyright. All rights reserved.