H. S. Kim et al. / Tetrahedron Letters 50 (2009) 3154–3157
3157
4. Zawisza, A. M.; Muzart, J. Tetrahedron Lett. 2007, 48, 6738–6742.
5. For the reactions involving b-carbon elimination, see: (a) Nishimura, T.;
Nishiguchi, Y.; Maeda, Y.; Uemura, S. J. Org. Chem. 2004, 69, 5342–5347; (b)
Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2003, 125,
8862–8869; (c) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett. 2003,
5, 2997–2999; (d) Nishimura, T.; Matsumura, S.; Maeda, Y.; Uemura, S.
Tetrahedron Lett. 2002, 43, 3037–3039; (e) Nishimura, T.; Ohe, K.; Uemura, S. J.
Am. Chem. Soc. 1999, 121, 2645–2646; (f) Nishimura, T.; Uemura, S. J. Am. Chem.
Soc 1999, 121, 11010–11011; (g) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.;
Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407–10408; (h) Terao, Y.; Wakui, H.;
Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236–
5243; (i) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
Soc. 2004, 126, 8658–8659; (j) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. 2008,
130, 2900–2901; (k) Nishimura, T.; Uemura, S. Synlett 2004, 201–216 and
further references cited therein.
6. Kim, H. S.; Gowrisankar, S.; Kim, E. S.; Kim, J. N. Tetrahedron Lett. 2008, 49,
6569–6572; Direct elimination of CH3Br from (II) to form the five-membered
palladacycle and the following simultaneous elimination of CO2 and Pd(0) to
form 3a would be also possible. For this type of reductive cleavage process
involving decarboxylation, see: Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka,
S.; Tamaru, Y. Angew. Chem., Int. Ed. 1997, 36, 2352–2354.
7. Dihydroindole 2a was synthesized by using the radical cyclization (AIBN, n-
Bu3SnH, benzene, reflux, 2 h) in 71% yield also. However, due to the toxicity of
tin metal and the fact that more than equivalent amounts of tin compound
have to be used, reductive Heck reaction can be regarded as a superior way
than the radical process.
(250 mg, 0.5 mmol), Pd(OAc)2 (6 mg, 5 mol %), PPh3 (13 mg, 10 mol %), and
Et3N (61 mg, 0.6 mmol) in aqueous CH3CN (2.0 mL, CH3CN/H2O, 9:1) was
heated to reflux for 18 h. After the usual aqueous workup and column
chromatographic purification process (hexanes/ether/CH2Cl2, 20:1:2),
compound 3a was isolated as a white solid, 130 mg (72%). Other compounds
were synthesized similarly, and the representative spectroscopic data of 3a, 3b,
and 3g are as follows.
Compound 3a: 72%; white solid, mp 156–158 °C; IR (film) 1465, 1357, 1167,
1117, 1092 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.34 (s, 3H), 4.87 (d, J = 3.0 Hz,
;
2H), 6.79 (t, J = 3.0 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 7.20–7.30 (m, 6H), 7.39–7.49
(m, 3H), 7.71–7.77 (m, 3H); 13C NMR (CDCl3, 75 MHz) d 21.50, 54.54, 114.70,
118.46, 120.27, 123.75, 127.10, 127.18, 128.27, 128.81, 129.79, 129.83, 131.04,
132.45, 134.04, 136.25, 143.26, 144.33; ESIMS m/z 362 (M++1). Anal. Calcd for
C22H19NO2S: C, 73.10; H, 5.30; N, 3.88. Found: C, 72.87; H, 5.41; N, 3.63.
Compound 3b: 74%; white solid, mp 150–152 °C; IR (film) 1483, 1356, 1166,
1130, 1092 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.33 (s, 3H), 2.34 (s, 3H), 4.84 (d,
;
J = 3.0 Hz, 2H), 6.76 (t, J = 3.0 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 7.19–7.28 (m, 6H),
7.38–7.43 (m, 2H), 7.64–7.72 (m, 3H); 13C NMR (CDCl3, 75 MHz) d 20.99, 21.50,
54.73, 114.63, 118.10, 120.61, 127.08, 127.14, 128.25, 128.80, 129.79, 130.69,
131.12, 132.62, 133.49, 133.89, 136.34, 141.16, 144.20; ESIMS m/z 376 (M++1).
Compound 3g: 75%; white solid, mp 111–113 °C; IR (film) 1714, 1479, 1407,
1384, 1276 cmÀ1 1H NMR (CDCl3, 300 MHz) d 1.39 (br t, J = 6.6 Hz, 3H), 4.33 (br
;
s, 2H), 4.82 (br s, 2H), 6.84 (t, J = 3.0 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 7.22–7.42
(m, 6H), 7.52 (d, J = 7.5 Hz, 1H), 7.97 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 14.43,
52.45, 61.28, 114.86, 117.38, 119.42, 122.46, 126.54, 127.92, 128.40, 129.27,
130.11, 132.96, 136.32, 143.53, 151.86; ESIMS m/z 280 (M++1).Syntheses of
8. Typical experimental procedure for the synthesis of 2a: A stirred mixture of 1a
(250 mg, 0.5 mmol), Pd(OAc)2 (6 mg, 5 mol %), PPh3 (13 mg, 10 mol %), HCOOH
(46 mg, 1.0 mmol), and Et3N (126 mg, 1.25 mmol) in DMF (2.0 mL) was heated
to 80 °C for 30 min. After the usual aqueous workup and column
chromatographic purification process (hexanes/EtOAc, 15:1), compound 2a
was isolated as colorless oil, 135 mg (64%).3 Other compounds were
synthesized similarly, and the representative spectroscopic data of 2b, 2e,
and 2g are as follows.
compounds 4 and 6 were carried out as shown in Scheme 3, and the
representative spectroscopic data of 4b, 4g, 6a, and 6b are as follows.
Compound 4b: 73%; colorless oil; IR (film) 1455, 1370, 1171, 1121, 1095 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 2.33 (s, 3H), 2.35 (s, 3H), 3.96 (s, 2H), 7.08–7.31 (m,
10H), 7.69 (t, J = 8.1 Hz, 2H), 7.84 (d, J = 8.7 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d
21.32, 21.52, 31.27, 113.50, 119.56, 122.32, 124.14, 126.10, 126.35, 126.70,
128.50, 128.58, 129.71, 131.11, 132.77, 133.77, 135.25, 139.05, 144.58; ESIMS
m/z 376 (M++1).
Compound 2b: 67%; white solid, mp 39–41 °C; IR (film) 1734, 1489, 1358, 1167,
Compound 4g: 81%; colorless oil; IR (film) 1733, 1456, 1399, 1380, 1249 cmÀ1
;
1092 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 2.29 (s, 3H), 2.35 (s, 3H), 2.81 (d,
1H NMR (CDCl3, 300 MHz) d 1.43 t, J = 7.2 Hz, 3H), 4.03 (d, J = 0.9 Hz, 2H), 4.45
(q, J = 7.2 Hz, 2H), 7.16–7.34 (m, 8H), 7.42 (d, J = 7.8 Hz, 1H), 8.16 (d, J = 8.1 Hz,
1H); 13C NMR (CDCl3, 75 MHz) d 14.41, 31.38, 62.99, 115.22, 119.34, 120.83,
122.66, 123.16, 124.53, 126.24, 128.46, 128.66, 130.47, 135.74, 139.49, 151.02;
ESIMS m/z 280 (M++1).
J = 13.5 Hz, 1H), 3.30 (d, J = 13.5 Hz, 1H), 3.59 (s, 3H), 3.96 (d, J = 11.1 Hz, 1H),
4.21 (d, J = 11.1 Hz, 1H), 6.92–6.95 (m, 2H), 7.07 (d, J = 8.4 Hz, 1H), 7.15–7.24
(m, 6H), 7.52 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H); 13C NMR (CDCl3,
75 MHz)
d 20.92, 21.44, 44.32, 52.43, 55.60 (2C), 114.08, 125.74, 127.08,
127.36, 128.39, 129.54, 129.56, 129.95, 132.35, 133.20, 133.80, 135.76, 138.85,
140.01, 172.27; ESIMS m/z 436 (M++1). Anal. Calcd for C25H25NO4S: C, 68.94; H,
5.79; N, 3.22. Found: C, 68.67; H, 5.98; N, 3.13.
Compound 6a: 88%; yellow oil; IR (film) 1644, 1534, 1447, 1379, 1208,
1175 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.35 (s, 3H), 7.24–7.28 (m, 2H), 7.35–
;
7.44 (m, 2H), 7.51–7.57 (m, 2H), 7.60–7.66 (m, 1H), 7.78–7.82 (m, 2H), 7.85–
Compound 2e: 80%; yellow oil; IR (film) 1732, 1603, 1495, 1454, 1244 cmÀ1 1H
;
7.89 (m, 2H), 7.97–8.00 (m, 1H), 8.03 (s, 1H), 8.29–8.32 (m, 1H); 13C NMR
NMR (CDCl3, 300 MHz) d 3.04 (d, J = 13.2 Hz, 1H), 3.36 (d, J = 9.6 Hz, 1H), 3.37
(d, J = 13.2 Hz, 1H), 3.68 (d, J = 9.6 Hz, 1H), 3.70 (s, 3H), 4.10 (d, J = 15.3 Hz, 1H),
4.33 d, J = 15.3 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 6.92–6.98
(m, 2H), 7.12 (t, J = 7.5 Hz, 1H), 7.15–7.33 (m, 8H), 7.36 (d, J = 7.5 Hz, 1H); 13C
NMR (CDCl3, 75 MHz) d 48.80, 52.14, 52.56, 56.16, 58.98, 107.27, 117.67,
124.75, 126.68, 127.08, 127.56, 128.12, 128.44, 128.97, 129.67, 130.27, 136.86,
137.91, 151.16, 173.43; ESIMS m/z 358 (M++1).
(CDCl3, 75 MHz) d 21.59, 113.14, 120.35, 122.94, 124.82, 125.91, 127.10,
128.48, 128.63, 128.99, 130.19, 132.35, 133.54, 134.44, 134.94, 139.14, 145.91,
190.82; ESIMS m/z 376 (M++1). Anal. Calcd for C22H17NO3S: C, 70.38; H, 4.56; N,
3.73. Found: C, 70.44; H, 4.76; N, 3.62.
Compound 6b: 86%; yellow oil; IR (film) 1645, 1533, 1377, 1215, 1175 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 2.34 (s, 3H), 2.45 (s, 3H), 7.20–7.26 (m, 3H), 7.50–7.56
(m, 2H), 7.59–7.65 (m, 1H), 7.76–7.80 (m, 2H), 7.84–7.88 (m, 3H), 7.97 (s, 1H),
8.11–8.12 (m, 1H); 13C NMR (CDCl3, 75 MHz) d 21.37, 21.55, 112.76, 120.15,
122.67, 127.03, 127.31, 128.59, 128.67, 128.97, 130.13, 132.27, 133.19, 133.68,
134.47, 134.73, 139.20, 145.78, 190.23; ESIMS m/z 390 (M++1).
9. Gowrisanakr, S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49,
6241–6244.
10. (a) Kim, S. J.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1069–1072;
(b) Kim, S. C.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 147–
150.
Compound 2g: 47%; colorless oil; IR (film) 1734, 1713, 1487, 1409, 1334 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 1.32 (br t, J = 7.2 Hz , 3H), 3.06 (d, J = 13.8 Hz, 1H),
3.46 (d, J = 13.8 Hz, 1H), 3.74 (s, 3H), 4.02 (br d, J = 12.0 Hz, 1H), 4.23 (br q,
J = 7.2 Hz, 2H), 4.43 (d, J = 12.0 Hz, 1H), 6.98–7.05 (m, 3H), 7.20–7.29 (m, 4H),
7.45 (d, J = 7.8 Hz, 1H), 7.82 (br s, 1H); 13C NMR (CDCl3, 75 MHz) d 14.58, 44.50,
52.56, 53.99, 55.24, 61.46, 114.96, 122.61, 124.75, 127.00, 128.30, 129.18,
129.56, 131.74, 135.92, 141.98, 152.80, 172.95; ESIMS m/z 340 (M++1).
Typical experimental procedure for the synthesis of 3a: A stirred mixture of 1a