The Journal of Organic Chemistry
ARTICLE
rotamer are reported) δ 7.94 (s, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.15 (d,
J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.90 (d, J = 9.4 Hz, 1H), 5.15
(t, J = 3.8 Hz, 1H), 4.61 (s, (2H), 4.48 (s, 2H), 4.32 (dd, J = 9.4, 7.9 Hz,
1H), 4.27 (d, J = 9.4 Hz, 1H), 4.22 (d, J = 10.6 Hz, 1H), 3.93 (d, J =
12.1 Hz, 1H), 3.77 (dd, J = 12.1, 3.4 Hz, 1H), 3.21 (d,
J = 10.6 Hz, 1H), 2.72 (m, 1H), 2.51ꢀ2.36 (om, 3H), 2.15 (m,
1H), 1.58ꢀ1.47 (om, 2H), 1.44 (m, 2H), 1.27ꢀ1.21 (om, 3H), 1.19
(dd, J = 7.6, 4.2 Hz, 1H), 1.11 (m, 1H), 1.07 (m, 1H), 0.95 (s, 9H),
0.93 (s, 3H), 0.88 (t, J = 7.6 Hz, 3H), 0.80 (dd, J = 9.4, 4.2 Hz, 1H),
0.75 (m, 1H), 0.60 (m, 1H), 0.73 (s, 3H); 13C NMR (150 MHz,
DMSO-d6) δ 174.8, 170.4, 169.4, 156.2, 153.3, 137.0, 136.2, 135.0,
127.8, 127.4, 120.3, 74.4, 71.1, 58.9, 58.4, 54.0, 52.1, 50.3,40.8,
Wan, B.-L.; Olsen, D. B.; Vacca, J. P. J. Am. Chem. Soc. 2008, 130,
4607–4609.
(7) Zhan 1B catalyst from Zanan Pharma: 1,3-bis(2,4,6-trimethyl-
phenyl)-4,5-dihydroimidazol-2-ylidene[2-(isopropoxy)-5-(N,N-dimethyl-
aminosulfonyl)phenyl]methyleneruthenium(II) dichloride. Neolyst M1
catalyst from Umicore: bis(triicyclohexylphosphine)[(phenylthio)methyl-
ene]ruthenium(II) dichloride
(8) Additional details can be found in the Supporting Information.
(9) The process chemistry group of Boehringer-Ingelheim have
developed routes to macrocycles by employing the ring closing metath-
esis reaction, see refs 10ꢀ12.
(10) Farina, V.; Shu, C.; Zeng, X.; Wei, X.; Han, Z.; Yee, N. K.;
Senanayake, C. H. Org. Process Res. Dev. 2009, 13, 250–254.
(11) Shu, C.; Zeng, X.; Hao, M.-H.; Wei, X.; Yee, N. K.; Busacca,
C. A.; Han, Z.; Farina, V.; Senanayake, C. H. Org. Lett. 2008, 10,
1303–1306.
36.6, 35.8, 35.1, 33.9, 32.6, 30.4, 30.2, 29.3, 26.4, 24.9, 23.2, 23.0,
25
365
19.8, 19.2, 13.8, 4.0, 3.9; [α]
MeOH/water).
= ꢀ199.9 (1.1 g/100 mL, 95/5
(12) Yee, N. K.; Farina, V.; Houpis, I. N.; Haddad, N.; Frutos, R. P.;
Gallou, F.; Wang, X.-J.; Wei, X.; Simpson, R. D.; Feng, X. J. Org. Chem.
2006, 71, 7133–7145.
’ ASSOCIATED CONTENT
(13) For examples of Heck macrocyclizations, see refs 14ꢀ17.
(14) Batenburg-Nguyen, U.; Ung, A. T.; Pyne, S. G. Tetrahedron
2008, 65, 318–327.
(15) Carr, J. L.; Offermann, D. A.; Holdom, M. D.; Dusart, P.; White,
A. J. P.; Beavil, A. J.; Leatherbarrow, R. J.; Lindell, S. D.; Sutton, B. J.;
Spivey, A. C. Chem. Commun. 2010, 46, 1824–1826.
(16) Yokoyama, H.; Satoh, T.; Furuhata, T.; Miyazawa, M.; Hirai, Y.
Synlett 2006, 16, 2649–2651.
S
Supporting Information. HPLC analysis conditions for
b
compounds 5, 8, 9, 15, 16, 18, 19, 22, 23, and MK-7009; chiral
assay methods for compounds 5, 8, and 15; NMR spectra files for
compounds 5-DCHA, 8-PTSA, 9, 15, 18-PTSA, 19, and MK-
7009. This material is available free of charge via the Internet at
(17) Menche, D.; Hassfeld, J.; Li, J.; Mayer, K.; Rudolph, S. J. Org.
Chem. 2009, 74, 7220–7229.
’ AUTHOR INFORMATION
(18) For examples of Suzuki macrocyclizations, see refs 19ꢀ21.
(19) Gibson, S. E.; Lecci, C.; White, A. J. P. Synlett 2006, 18,
2929–2934.
Corresponding Authors
*E-mail: zhiguo_song@merck.com, david_tellers@merck.com.
(20) Tortosa, M.; Yakelis, N. A.; Roush, W. R. J. Org. Chem. 2008,
73, 9657–9667.
’ ACKNOWLEDGMENT
(21) White, J. D.; Tiller, T.; Ohba, Y.; Porter, W. J.; Jackson, R. W.;
Wang, S.; Hanselmann, R. Chem. Commun. 1998, 1, 79–80.
(22) For a comparison of Heck, Suzuki, and Sonogashira in an
acyclic system, see: Brown Ripin, D. H.; Bourassa, D. E.; Brandt, T.;
Castaldi, M. J.; Frost, H. N.; Hawkins, J.; Johnson, P. J.; Massett, S. S.;
Neumann, K.; Phillips, J.; Raggon, J. W.; Rose, P. R.; Rutherford, J. L.;
Sitter, B. A.; Stewart, M., III; Vetelino, M. G.; Wei, L. Org. Process Res.
Dev. 2005, 9, 440–450.
(23) For examples of macrolactamization reactions, see refs 24ꢀ28.
(24) Ohtani, T.; Tsukamoto, S.; Kanda, H.; Misawa, K.; Urakawa, Y.;
Fujimaki, T.; Imoto, M.; Takahashi, Y.; Takahashi, D.; Toshima, K. Org.
Lett. 2010, 12, 5068–5071.
The author would like to thank our colleagues who gave
their support of this project: Nigel Liverton, Michael Rudd,
John Butcher, John McCauley, Charles McIntyre, Joe Ro-
mano, Birgit Kosjek, Yaling Wang, Scott Thomas, Margaret
Figus, Jake Janey, Laura Artino, Osama Sudah, Vincent
Capoddano, Richard Desmond, Brian Bishop, Adrian Good-
year, Mike Ashwood, Gary Javadi, Lisa DiMichele, and
J. Chris McWilliams.
’ REFERENCES
(25) Gibson, S. E.; Lecci, C. Angew. Chem., Int. Ed. 2006, 45,
1364–1377.
(1) Lavanchy, D. Liver Int. 2009, 29 (Suppl 1), 74–81.
(2) Fellay, J.; Thompson, A. J.; Ge, D.; Gumbs, C. E.; Urban, T. J.;
Shianna, K. V.; Little, L. D.; Qiu, P.; Bertelsen, A. H.; Watson, M.; et al.
Nature 2010, 464, 405–408.
(3) McCauley, J. A.; McIntyre, C. J.; Rudd, M. T.; Nguyen, K. T.;
Romano, J. J.; Butcher, J. W.; Gilbert, K. F.; Bush, K. J.; Holloway,
M. K.; Swestock, J.; Wan, B.-L; Carroll, S. S.; DiMuzio, J. M.; Graham,
D. J.; Ludmerer, S. W.; Mao, S.-S; Stahlhut, M. W.; Fandozzi, C. M.;
Trainor, N.; Olsen, D. B.; Vacca, J. P.; Liverton, N. J. J. Med. Chem.
2010, 53, 2443–2463.
(4) Holloway, M. K.; Liverton, N. J.; Ludmerer, S. W.; McCauley,
J. A.; Olsen, D. B.; Rudd, M. T.; Vacca, J. P.; McIntyre, C. J. HCV NS3
Protease Inhibitors U.S. Patent 7,470,664, 2008.
(5) Liverton, N. J.; Carroll, S. S.; DiMuzio, J. M.; Fandozzi, C.;
Graham, D. J.; Hazuda, D. J.; Holloway, M. K.; Ludmerer, S. W.;
McCauley, J. A.; McIntyre, C. J.; Olsen, D. B.; Rudd, M. T.;
Stahlhut, M.; Vacca, J. P. Antimicrob. Agents Chemother. 2010,
54, 305–311.
(26) Dai, C.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3453–3455.
(27) Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.;
Baran, P. S. Angew. Chem., Int. Ed. 2010, 49, 1095–1098.
(28) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Handbook of Cyclization Reactions;
Ma, S., Ed.; Wiley: New York, 2010; Vol. 2, 1055ꢀ1097.
(29) This ratio was determined after the hydrogenation reaction
where the ratio of saturated species was quantified by HPLC. Attempts
to identify the exact structure of the various olefin isomers by NMR were
unsuccessful. The slow degradation of these olefins in air also hampered
the isolation attempts.
(30) It appears that the Heck reaction between unactivated,
alkyl-substituted terminal olefins and aromatic halides to produce
exclusively the linear product is an unsolved problem. One potential
solution is discussed in the following reference: Littke, A. F.; Fu,
G. C. J. Am. Chem. Soc. 2001, 123, 6989–7000 (Table 2, entry 2).
(31) For a discussion on ligand-less Heck reactions, see refs: 31, 32.
(32) Kleist, W.; Proeckl, S. S.; Koehler, K. Catal. Lett. 2008, 125,
197–200.
(6) Liverton, N. J.; Holloway, M. K.; McCauley, J. A.; Rudd, M. T.;
Butcher, J. W.; Carroll, S. S.; DiMuzio, J.; Fandozzi, C.; Gilbert, K. F.;
Mao, S.-S.; McIntyre, C. J.; Nguyen, K. T.; Romano, J. J.; Stahlhut, M.;
(33) Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68,
7528–7531.
7814
dx.doi.org/10.1021/jo2011494 |J. Org. Chem. 2011, 76, 7804–7815