10.1002/ejoc.201901865
European Journal of Organic Chemistry
COMMUNICATION
[5]
(a) For selected reviews on P-containing materials, see: (a) T.
Baumgartner, R. Réau, Chem. Rev. 2006, 106, 4681; (b) C. Queffelec,
M. Petit, P. Janvier, D. A. Knight, B. Bujoli, Chem. Rev. 2012, 112,
3777; (c) T. Baumgartner, Acc. Chem. Res. 2014, 47, 1613; (d) R.
Szucs, P. A. Bouit, L. Nyulaszi, M. Hissler, ChemPhysChem 2017, 18,
2618; For selected examples, see: (e) C. Han, Z. Zhang, H. Xu, J. Li, G.
Xie, R. Chen, Y. Zhao, W. Huang, Angew. Chem. Int. Ed. 2012, 51,
10104; Angew. Chem. 2012, 124, 10251; (f) L. Qiu, W. Hu, D. Wu, Z.
Duan, F. Mathey, Org. Lett. 2018, 20, 7821.
[13] (a) C. Liu, M. Szostak, Angew. Chem. Int. Ed. 2017, 56, 12718; Angew.
Chem. 2017, 129, 12892; (b) R. Isshiki, K. Muto, J. Yamaguchi, Org.
Lett. 2018, 20, 1150.
[14] J. Dong, L. Liu, X. Ji, Q. Shang, L. Liu, L. Su, B. Chen, R. Kan, Y. Zhou,
S.-F. Yin, L.-B. Han, Org. Lett. 2019, 21, 3198.
[15] For a pioneering work, see: (a) K. Nagayama, I. Shimizu, A. Yamamoto,
Chem. Lett. 1998, 27, 1143; Synthesis of ketones with the strategy, see:
(b) L. J. Gooßen, K. Ghosh, Eur. J. Org. Chem. 2002, 2002, 3254; (c) R.
Kakino, S. Yasumi, I. Shimizu, A. Yamamoto Bull. Chem. Soc. Jpn.
2002, 75, 137; (d) R. Kakino, H. Narahashi, I. Shimizu, A. Yamamoto
Bull. Chem. Soc. Jpn. 2002, 75, 1333; (e) H. Yin, C. Zhao, H. You, K.
Lin, H. Gong, Chem. Commun. 2012, 48, 7034; (f) X. Jia, X. Zhang, Q.
Qian, H. Gong, Chem. Commun. 2015, 51, 10302; For decarbonylation
elimination of alkyl carboxylic acids forming alkenes, see: (g) S.
Maetani, T. Fukuyama, N. Suzuki, D. Ishihara, I. Ryu, Chem. Commun.
2012, 48, 2552. (h) X. Zhang, F. Jordan, M. Szostak, Organ. Chem.
Front. 2018, 5, 2515.
[6]
For selected examples on nucleophilic substitutions reactions, see: (a)
C. P. Casey, E. L. Paulsen, E. W. Beuttenmueller, B. R. Proft, L. M.
Petrovich, B. A. Matter, D. R. Powell, J. Am. Chem. Soc. 1997, 119
i ne e - o ente a tolo , L. A.
Oro, Synthesis 2009, 2009, 1916.
[7]
[8]
(a) A. K. Bhattachary, G. Thyarajan, Chem. Rev. 1981, 81, 415; (b) W.
P. Almeida, C. R. D. Correia, Tetrahedron lett. 1994, 35, 1367; (c) G.
Yang, C. Shen, L. Zhang, W. Zhang, Tetrahedron Lett. 2011, 52, 5032;
(d) R. S. Shaikh, S. J. S. Düsel, B. König, ACS Catal. 2016, 6, 8410.
(a) T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Tetrahedron Lett.
1980, 21, 35958; (b) T. Hirao, T. Masunaga, N. Yamada, Y. Ohshiro, T.
Agawa, Bull. Chem. Soc. Jpn 1982, 55, 909; For selected examples of
Ar–X as coupling partners, see: (c) L. J. Dmitri Gelman, Stephen L.
Buchwald, Org. Lett. 2003, 5, 2315; (d) W. C. Fu, C. M. So, F. Y.
Kwong, Org. Lett. 2015, 17, 5906; (e) L. L. Liao, Y. Y. Gui, X. B. Zhang,
G. Shen, H. D. Liu, W. J. Zhou,. J. Li, D. G. Yu, Org. Lett. 2017, 19,
3735.
[16] The strategy that carboxylic acids activated in situ coupled with
nucleophiles with CO release (decarbonylation coupling) has attracted
chemists’ attention. For a related reviews, see: (a) J. Buchspies, M.
Szostak, Catalysts 2019, 9, 53. For Rh-catalyzed examples, see: (b) L.
J. Gooßen, J. Paetzold, Adv. Synth. Catal. 2004, 346, 1665; (c) F. Pan,
Z. Q. Lei, H. Wang, H. Li, J. Sun, Z. J. Shi, Angew. Chem. Int. Ed. 2013,
52, 2063; Angew. Chem. 2013, 125, 2117; (d) L. Zhang, X. Xue, C. Xu,
Y. Pan, G. Zhang, L. Xu, H. Li, Z. Shi, ChemCatChem 2014, 6, 3069; (e)
L. Zhang, R. Qiu, X. Xue, Y. Pan, C. Xu, D. Wang, X. Wang, L. Xu, H.
Li, Chem. Commun. 2014, 50, 12385; (f) R. Qiu, L. Zhang, C. Xu, Y.
Pan, H. Pang, L. Xu, H. Li, Adv. Synth. Catal. 2015, 357, 1229; (g) J.
Xu, C. Chen, H. Zhao, C. Xu, Y. Pan, X. Xu, H. Li, L. Xu, B. Fan, Organ.
Chem. Front. 2018, 5, 734; (h) X. Qiu, P. Wang, D. Wang, M. Wang, Y.
Yuan, Z. Shi, Angew. Chem. Int. Ed. 2019, 58, 1504; Angew. Chem.
2019, 131, 1518; (i) H. Zhao, X. Xu, Z. Luo, L. Cao, B. Li, H. Li, L. Xu,
Q. Fan, P. J. Walsh, Chem. Sci. 2019, 10, 10089; For Ni-catalyzed
examples, see: (j) C. A. Malapit, J. R. Bour, S. R. Laursen, M. S.
Sanford, J. Am. Chem. Soc. 2019, 141, 17322; (k) C. A. Malapit, J. R.
Bour, C. E. Brigham, M. S. Sanford, Nature 2018, 563, 100; For Pd-
catalyzed examples, see: (l) L. J. Gooßen, J. Paetzold L. Winkel,
Synlett 2002, 2002, 1721; (m) C. Liu, C. L. Ji, X. Hong, M. Szostak,
Angew. Chem. Int. Ed. 2018, 57, 16721; Angew. Chem. 2018, 130,
16963; (n) C. Liu, Z. X. Qin, C. L. Ji, X. Hong, M. Szostak, Chem. Sci.
2019, 10, 5736; (o) C. Liu, C. L. Ji, Z. X. Qin, X. Hong, M. Szostak,
iScience 2019, 19, 749.
[9]
For more recently on Hirao-type coupling forming C–P bonds through
C– C−O C–CN C−S C−N and C−Si cleavage see: a) G. Hu, W.
Chen, T. Fu, Z. Peng, H. Qiao, Y. Gao, Y. Zhao, Org. Lett. 2013, 15,
5362; (b) Zhuang, R.; J. Xu, Z. Cai, G. Tang, M. Fang, Y. Zhao, Org.
Lett. 2011, 13, 2110; (c) Y.- L. Zhao, G.- J. Wu, F.-S. Han, Chem.
Commun. 2012, 48, 5868; (d) J. Yang, T. Chen, L.-B. Han, J. Am.
Chem. Soc. 2015, 137, 1782; (e) J.-S. Zhang, T. Chen, J. Yang, L.- B.
Han, Chem. Commun. 2015, 51, 7540; (f) J. Yang, J. Xiao, T. Chen, S.-
F. Yin, L.-B. Han, Chem. Commun. 2016, 52, 12233; (g) W. Xu, G. Hu,
P. Xu, Y. Gao, Y. Yin, Y. Zhao, Adv. Synth. Catal. 2014, 356, 2948; (h)
B. Yang, Z. X. Wang, J. Org. Chem. 2019, 84, 1500; (i) H. Luo, H. Liu,
X. Chen, K. Wang, X. Luo, K. Wang, Chem. Commun. 2017, 53, 956.
[10] For oxidative C–H/P(O)–H cross dehydrogenation coupling, see: (a) Y.
H. Budnikova, O. G. Sinyashin, Russ. Chem. Rev. 2015, 84, 917; (b)
C.-G. Feng, M. Ye, K. J. Xiao, S. Li, J.-Q. Yu, J. Am. Chem. Soc. 2013,
135, 9322; (c) C. Li, T. Yano, N. Ishida, M. Murakami, Angew. Chem.
Int. Ed. 2013, 52, 9801; Angew. Chem. 2013, 125, 9983.
[17] Due to the strong coordination between P(O)–H compounds to
transition metals, it is difficult to directly extend the established catalytic
coupling system to the synthesis of organophosphorus compounds
using P(O)–H compounds. For selected examples on R1R2P(O)H as
ligands, see: (a) G. Y. Li, Angew. Chem. Int. Ed. 2001, 40, 1513;
Angew. Chem. 2001, 113, 1561; (b) J. Bigeault, L. Giordano, G. Buono,
Angew. Chem. Int. Ed. 2005, 44, 4753; Angew. Chem. 2005, 117, 4831;
(c) L. Ackermann, R. Born, J. H. Spatz, D. Meyer, Angew. Chem. Int.
Ed. 2005, 44, 7216; Angew. Chem. 2005, 117, 7382; (d) I. Cano, A. M.
Chapman, A. Urakawa, P. W. van Leeuwen, J. Am. Chem. Soc. 2014,
136, 2520; (e) I. Cano, M. A. Huertos, A. M. Chapman, G. Buntkowsky,
T. Gutmann, P. B. Groszewicz, P. W. van Leeuwen, J. Am. Chem. Soc.
2015, 137, 7718.
[11] Carboxylic acids has been widely used for constructing chemical bonds,
for selected reviews, see: (a) S. M. Bonesi, M. Fagnoni, Chem. Eur. J.
2010, 16, 13572; (b) N. Rodriguez, L. J. Goossen, Chem. Soc. Rev.
2011, 40, 5030; (c) W. I. Dzik, P. P. Lange, L. J. Gooßen, Chem. Sci.
2012, 3, 2671; (d) T. Patra, D. Maiti, Chem. Eur.J. 2017, 23, 7382;
Carboxylic derivatives have also been widely applied in organic
synthesis, for selected reviews, see: (e) A. Dermenci, G. Dong, Sci.
China Chem. 2013, 56, 685; For recent developments, see: f) L. Guo,
M. Rueping, Acc. Chem. Res. 2018, 5, 1185; (g) L. Guo, M. Rueping,
Chem. Eur.J. 2018, 24, 7794.
[12] Cross coupling of carboxylic acids with P(O)–H compounds has been
achieved; however, those reactions were performed under oxidative
reaction conditions with CO2 release (decarboxylation coupling) and
usually suffered from oxidation of P(O)–H compounds to the
corresponding acids. For a review, see: (a) A. Hosseinian, F. A.
Hosseini Nasab, S. Ahmadi, Z. Rahmani, E. Vessally, RSC Adv. 2018,
8, 26383. For transformation of o-nitro benzoic acids, see: (b) J. Li, X.
Bi, H. Wang, J. Xiao, Asian J. Org. Chem. 2014, 3, 1113. For
transformations of alkyl or alkenyl carboxylic acids, see: (c) J. Hu, N.
Zhao, B. Yang, G. Wang, L. N. Guo, Y. M. Liang, S.-D. Yang, Chem.-
Eur. J. 2011, 17, 5516; (d) Y. Wu, L. Liu, K. Yan, P. Xu, Y. Gao, Y.
Zhao, J. Org. Chem. 2014, 79, 8118; (e) L. Tang, L. Wen, T. Sun, D.
Zhang, Z. Yang, C. Feng, Z. Wang, Asian J. Org. Chem. 2017, 6, 1683;
(f) L. Liu, D. Zhou, J. Dong, Y. Zhou, S.-F. Yin, L.-B. Han, J. Org. Chem.
2018, 83, 4190.
[18] C. Liu, C. L. Ji, T. Zhou, X. Hong, M. Szostak, Org. Lett. 2019, 21, 9256.
[19] Phosphonic and phosphinic acids in lieu of carboxylic acids in
bioisostere can hugely reform its intrinsic drug activity, see: (a) C.
Ballatore, D. M. Huryn, A. B. Smith, ChemMedChem 2013, 8, 385; (b)
P. Lassalas, B. Gay, C. Lasfargeas, M. J. James, V. Tran, K. G.
Vijayendran, K. R. Brunden, M. C. Kozlowski, C. J. Thomas, A. B.
Smith, D. M. Huryn, C. Ballatore, J. Med. Chem. 2016, 59, 3183.
[20] G. Meng, M. Szostak, Angew. Chem. Int. Ed. 2015, 54, 14518; Angew.
Chem. 2015, 127,14726.
[21] T. Chen, C.-Q. Zhao, L.-B. Han, J. Am. Chem. Soc. 2018, 140, 3139.
[22] Ligand exchange takes place prior to decarbonylation could not be
excluded at present. Meanwhile, it is also unknown when the possible
decomposition of carbonate derivatives upon heating to generate CO2
occurs.
This article is protected by copyright. All rights reserved.