B. Wang, R.-H. Liu
FULL PAPER
O. L. Ventura, V. Bellosta, J. Cossy, Synlett 2008, 1216–1218;
d) A. Ashoorzadeh, V. Caprio, Synlett 2005, 346–348; e) P.-Q.
Huang, B.-G. Wei, Y.-P. Ruan, Synlett 2003, 1663–1667; f) H.
Ooi, A. Urushibara, T. Esumi, Y. Iwabuchi, S. Hatakeyama,
Org. Lett. 2001, 3, 953–955; g) T. Taniguchi, K. Ogasawara,
Org. Lett. 2000, 2, 3193–3195; h) S. Kobayashi, M. Ueno, R.
Suzuki, H. Ishitani, H. S. Kim, Y. Wataya, J. Org. Chem. 1999,
64, 6833–6841; i) L. E. Burgess, E. K. M. Gross, J. Jurka, Tetra-
hedron Lett. 1996, 37, 3255–3258.
For reviews, see: a) S. Hanessian, G. McNaughton-Smith,
H. G. Lombart, W. D. Lubell, Tetrahedron 1997, 53, 12789–
12854; b) S. M. Cowell, Y. S. Lee, J. P. Cain, V. J. Hruby, Curr.
Med. Chem. 2004, 11, 2785–2798.
Chiral pool approachs: a) L.-X. Liu, Q.-L. Peng, P.-Q. Huang,
Tetrahedron: Asymmetry 2008, 19, 1200–1203; b) N. B. Kal-
amkar, V. M. Kasture, D. D. Dhavale, J. Org. Chem. 2008, 73,
3619–3622; c) V.-T. Pham, J.-E. Joo, Y.-S. Tian, Y.-S. Chung,
K.-Y. Lee, C.-Y. Oh, W.-H. Ham, Tetrahedron: Asymmetry
2008, 19, 318–321; d) N. Liang, A. Datta, J. Org. Chem. 2005,
70, 10182–10185; e) S. D. Koulocheri, P. Magiatis, A.-L.
Skaltsounis, S. A. Haroutounian, Tetrahedron 2002, 58, 6665–
6671; f) A. Jourdant, J. Zhu, Tetrahedron Lett. 2000, 41, 7033–
7036; g) L. Battistini, F. Zanardi, G. Rassu, P. Spanu, G. Pelosi,
G. G. Fava, M. B. Ferrari, G. Casiraghi, Tetrahedron: Asym-
metry 1997, 8, 2975–2987; h) C. Agami, F. Couty, H. Mathieu,
Tetrahedron Lett. 1996, 37, 4001–4002.
Asymmetric syntheses: a) C. Alegret, X. Ginesta, A. Riera, Eur.
J. Org. Chem. 2008, 1789–1796; b) I. S. Kim, J. S. Oh, O. P. Zee,
Y. H. Jung, Tetrahedron 2007, 63, 2622–2633; c) P. Kumar,
M. S. Bodas, J. Org. Chem. 2005, 70, 360–363; d) M. S. Bodas,
P. Kum a r, Tetrahedron Lett. 2004, 45, 8461–8463; e) M. Had-
dad, M. Larcheveque, Tetrahedron Lett. 2001, 42, 5223–5225; f)
M. Horikawa, J. Busch-Petersen, E. J. Corey, Tetrahedron Lett.
1999, 40, 3843–3846.
(2R,3R)-2-(Hydroxymethyl)piperidin-3-ol (3): Starting from 17
(82 mg, 0.24 mmol), following the same procedure as for com-
pound 4, the crude product was purified by silica gel flash column
chromatography (MeOH/CH2Cl2 = 1:2) to afford 3 (30 mg, 95%)
as a colorless liquid. [α]2D3 = –12.2 (c = 0.30, H2O), ref.[16a] [α]2D1
=
–12.4 (c = 2.51, H2O); 1H NMR (500 MHz, D2O): δ = 4.61 (s, 1
H), 4.37–4.26 (m, 2 H), 3.68 (d, J = 13.0 Hz, 1 H), 3.47 (m, 1 H),
3.30 (m, 1 H), 2.55–2.47 (m, 1 H), 2.45–2.30 (m, 2 H), 2.18–2.12
(m, 1 H) ppm. 13C NMR (D2O, 125 MHz): δ = 67.4, 64.3, 61.7,
46.6, 32.3, 21.8 ppm. HR-ESI-MS: calcd.for C6H14NO2 [M + H]+
132.1025; found 132.1017.
[5]
[6]
(2R,3R)-tert-Butyl
2-(Benzyloxymethyl)-3-hydroxypiperidine-1-
carboxylate (19): A solution of 16 (47 mg, 0.11 mmol) and NH4F
(52 mg, 1.4 mmol) in MeOH/H2O (10:1, 2 mL) was heated at 60 °C
for 36 h, cooled, diluted with diethyl ether, washed successively with
H2O and brine, dried (Na2SO4), filtered and concentrated under
reduced pressure. The residue was purified by silica gel flash col-
umn chromatography (EtOAc/hexanes = 1:2) to afford 19 (31 mg,
91%) as a colorless liquid. [α]2D3 = –38.9 (c = 0.76, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 7.39–7.25 (m, 5 H), 4.62 (br. m, 1
H), 4.54 (AB, JAB = 12.0 Hz, 2 H), 3.90 (m, 1 H), 3.89 (dd, J =
9.8, 7.4 Hz, 1 H), 3.82 (dt, J = 11.5, 5.0 Hz, 1 H), 3.67 (dd, J =
9.7, 6.1 Hz, 1 H), 3.07 (br. s, 1 H), 2.66 (t-like, J = 12.8 Hz, 1 H),
1.88 (m, 1 H), 1.66 (m, 1 H), 1.57 (m, 1 H), 1.47 (m, 1 H), 1.44 (s,
9 H) ppm. 13C NMR (CDCl3, 125 MHz): δ = 154.9, 137.7, 128.4,
127.7, 127.6, 79.8, 73.2, 69.5, 66.6, 53.2, 39.0, 28.8, 28.4, 23.9 ppm.
HR-ESI-MS: calcd.for C18H28NO4 [M + H]+ 322.2018; found
322.2016.
[7]
Supporting Information (see also the footnote on the first page of
1
this article): H and 13C NMR spectra for the new compounds 7–
10, 12–16, and 18.
[8]
[9]
Enzymatic resolution: a) Y. Yoshimura, C. Ohara, T. Imahori,
Y. Saito, A. Kato, S. Miyauchi, I. Adachi, H. Takahata, Bioorg.
Med. Chem. 2008, 17, 8273–8286; b) See ref.[2b]
.
a) R.-H. Liu, K. Fang, B. Wang, M.-H. Xu, G.-Q. Lin, J. Org.
Chem. 2008, 73, 3307–3310; b) B. Wang, K. Fang, G.-Q. Lin,
Tetrahedron Lett. 2003, 44, 7981–7984; c) B. Wang, X.-M. Yu,
G.-Q. Lin, Synlett 2001, 904–906; d) D.-G. Liu, B. Wang, G.-
Q. Lin, J. Org. Chem. 2000, 65, 9114–9119; e) B. Wang, Z.
Zhong, G.-Q. Lin, Org. Lett., DOI: 10.1021/ol900452n.
J. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T.
Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. 2008,
130, 17938–17954.
Acknowledgments
Funding from the National Natural Science Foundation of China
(20602008, 20832005) and Fudan University (EYH1615003) are
gratefully acknowledged.
[10]
[11]
[12]
Y.-W. Zhong, Y.-Z. Dong, K. Fang, K. Izumi, M.-H. Xu, G.-
Q. Lin, J. Am. Chem. Soc. 2005, 127, 11956–11957.
The diastereoselectivity here refers to the ratio of (SS,2S,3S)-
to (SS,2R,3R)-substituted compounds. These are diastereomers
in principle, but in practice may be difficult or impossible to
separate by column chromatography, as the Rf values are close
or even identical. After removal of sulfinyl auxiliary, the former
diastereomeric pair would turn into an enantiomeric pair, thus
lowering the enantiomeric purity of the amino alcohol. In the
case of coupling using tert-butylsulfinyl benzaldimine, the dr
was about 19:1. If the unwanted diastereomer was not sepa-
rated by recrystallization, this dr would translate into only
about 90% ee.
L. A. Paquette, I. Collado, M. Purdie, J. Am. Chem. Soc. 1998,
120, 2553–2562.
a) M. T. Nunez, V. S. Martin, J. Org. Chem. 1990, 55, 1928–
1932; b) P. H. J. Carlsen, T. Katsuki, V. S. Martin, K. B.
Sharpless, J. Org. Chem. 1981, 46, 3936–3938.
G. R. Cook, P. S. Shanker, J. Org. Chem. 2001, 66, 6818–6822.
a) H. Takahata, Y. Banba, H. Ouchi, H. Nemoto, A. Kato, I.
Adachi, J. Org. Chem. 2003, 68, 3603–3607; b) M. H. Haukaas,
G. A. O’Doherty, Org. Lett. 2001, 3, 401–404.
J. M. Andrés, R. Pedrosa, A. Pérez-Encabo, Eur. J. Org. Chem.
2007, 1803–1810.
[1] For leading reviews, see: a) M. G. P. Buffat, Tetrahedron 2004,
60, 1701–1729; b) P. M. Weintraub, J. S. Sabol, J. M. Kane,
D. R. Borcherding, Tetrahedron 2003, 59, 2953–2989; c) S. Las-
chat, T. Dickner, Synthesis 2000, 1781–1813; d) M. J. Schneider,
in Alkaloids: Chemical and Biological Perspectives (Ed.: S. W.
Pelletier), Pergamon, Oxford, 1996, vol. 10, pp. 155–299; e)
G. B. Fodor, B. Colasanti, in Alkaloids: Chemical and Bio-
logical Perspectives (Ed.: S. W. Pelletier), Wiley-Interscience,
New York, 1985, vol. 3, pp. 1–90.
[2] a) C. Kadouri-Puchot, S. Comesse, Amino Acids 2005, 29, 101–
130; b) F. Couty, Amino Acids 1999, 16, 297–320; c) J. Gillard,
A. Abraham, P. C. Anderson, P. L. Beaulieu, T. Bogri, Y. Bous-
quet, L. Grenier, Y. Guse, P. Lavellée, J. Org. Chem. 1996, 61,
2226–2231; d) B. Ho, T. M. Zabriskie, Bioorg. Med. Chem.
Lett. 1998, 8, 739–744; e) J. W. Skiles, P. P. Giannousis, K. R.
Fales, Bioorg. Med. Chem. Lett. 1996, 6, 963–966.
[3] a) J. D. Scott, R. D. Williams, J. Am. Chem. Soc. 2002, 124,
2951–2956; b) J. D. Scott, T. N. Tippie, R. M. Williams, Tetra-
hedron Lett. 1998, 39, 3659–3662.
[4] For the isolation of febrifugine: a) J. B. Koepfli, J. F. Mead,
J. A. Brockman Jr., J. Am. Chem. Soc. 1947, 69, 1837; b) J. B.
Koepfli, J. F. Mead, J. A. Brockman Jr., J. Am. Chem. Soc.
1949, 71, 1048–1054; for selected synthesis, see: c) B. Sieng,
[13]
[14]
[15]
[16]
[17]
2850
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 2845–2851