1178
M. Nishizawa et al.
LETTER
References and Notes
O
O
TfOHg
13
(1) Present address: Division of Chemistry, Graduate School of
Science, Hokkaido University, Kita-ku, Saporo 060-0810,
Japan.
TfOHg
endo-12
C4H9
C4H9
exo-12
(2) (a) Hintermann, L.; Labonne, A. Synlett 2007, 1121..
(b) Stacy, G. W.; Mikulec, R. A. Org. Synth., Coll. Vol. IV;
Wiley: New York, 1963, 13–14.
(3) (a) Thomas, R. J.; Campbell, K. N.; Hennion, G. F. J. Am.
Chem. Soc. 1938, 60, 718. (b) Janardhanam, S.; Balakumar,
A.; Rajagopalan, K.; Bai, L. S.; Ravikumar, K.; Rajan, S. S.
Synth. Commun. 1993, 23, 297. (c) Mithran, S.;
15
16
O
C4H9
TfOHg
O
TfOHg
endo-14
C4H9
exo-14
Scheme 4 Equilibrium affording 13 selectively and a mixture of 15
and 16
Subbaraman, A. S.; Mamdapur, V. R. Org. Prep. Proced.
Int. 1994, 26, 482. (d) Take, K.; Okumura, K.; Tsubaki, K.;
Taniguchi, K.; Terai, T.; Shiokawa, Y. Chem. Pharm. Bull.
1996, 44, 1858. (e) Schick, H.; Roatsch, B.; Schramm, S.;
Gilsing, H.-D.; Ramm, M.; Gründemann, E. J. Org. Chem.
1996, 61, 5788. (f) Jacobi, P. A.; Herradura, P. Tetrahedron
Lett. 1997, 38, 6621.
93% yield selectively within 10 minutes at room temper-
ature via endo-mode participation of hydroxy group. Hy-
dration of b-alkynyl tert-alcohol 25 using 1 mol% of
Hg(OTf)2 also took place smoothly to give 26 in 82%
yield selectively within 10 minutes. Hydration of g-alky-
nyl sec-alcohol 27 and tert-alcohol 30 also took place
smoothly but produced a mixture of products. Specifical-
ly, hydration of 27 and 30 afforded a 3:1 mixture of 2820f
and 29, and a 4:1 mixture of 31 and 3220g in 78% and 77%
yield, respectively, based on the energetically comparable
endo- and exo-mode participation. Hydration of d-hy-
droxy alkynol 33 afforded d-hydroxy ketone 34 selective-
ly and instantaneously in 95% yield via exo-mode
participation.20h The tert-alcohol, 2-methyldodec-6-yn-2-
ol (35) was also quickly hydrated in the presence of 1
mol% of Hg(OTf)2 giving rise to 36 in 89% yield selec-
tively. Phenyl-substituted 37 similarly hydrated quickly to
give 38 in 87% yield as a sole product. Cyclobutanol de-
rivative 39 also instantaneously provided single keto alco-
hol 40 in 97% yield.
(4) (a) Uchimoto, K. Pure Appl. Chem. 1983, 55, 1845.
(b) Fukuda, Y.; Shiragami, H.; Uchimoto, K.; Nozaki, H.
J. Org. Chem. 1991, 56, 5816.
(5) (a) Hiscox, W.; Jennings, P. W. Organometallics 1990, 9,
1997. (b) Hartman, J. W.; Hiscox, W. C.; Jennings, P. W.
J. Org. Chem. 1993, 58, 7613. (c) Jennings, P. W.;
Hartman, J. W.; Hiscox, W. C. Inorg. Chim. Acta 1994, 222,
317.
(6) (a) Fukuda, Y.; Uchimoto, K. J. Org. Chem. 1991, 56, 3729.
(b) Vasudevan, A.; Verzal, M. K. Synlett 2004, 631.
(7) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew.
Chem. Int. Ed. 2002, 41, 4563.
(8) (a) James, B. R.; Rempel, G. L. J. Am. Chem. Soc. 1969, 91,
863. (b) Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal.
1992, 75, 153.
(9) Meier, I. K.; Marsella, J. A. J. Mol. Catal. 1993, 78, 31.
(10) Damiano, J. P.; Postel, M. J. Organomet. Chem. 1996, 522,
303.
(11) (a) Chapdelaine, M. J.; Warwick, P. J.; Shaw, A. J. Org.
Chem. 1989, 54, 1218. (b) Tsuchimoto, T.; Joya, T.;
Shirakawa, E.; Kawakami, Y. Synlett 2000, 1777. (c) Olivi,
N.; Thomas, E.; Peyrat, J. F.; Alami, M.; Brion, J. D. Synlett
2004, 2175. (d) Bras, G. L.; Provot, O.; Peyrat, J. F.; Alami,
M.; Brion, J. D. Tetrahedron Lett. 2006, 47, 5497.
(12) (a) Khan, M. M. T.; Halligudi, S. B.; Shukla, S. J. Mol.
Catal. 1990, 58, 299. (b) Tokunaga, M.; Wakatsuki, Y.
Angew. Chem. Int. Ed. 1998, 37, 2867. (c) Alvarez, P.;
Bassetti, M.; Gimeno, J.; Mancini, G. Tetrahedron Lett.
2001, 42, 8467. (d) Suzuki, T.; Tokunaga, M.; Wakatsuki,
Y. Org. Lett. 2001, 3, 735. (e) Grotjahn, D. B.; Incarvito, C.
D.; Rheingold, A. L. Angew. Chem. Int. Ed. 2001, 40, 3884.
(13) (a) Nishizawa, M.; Takenaka, H.; Nishide, H.; Hayashi, Y.
Tetrahedron Lett. 1983, 24, 2581. (b) Nishizawa, M.;
Morikuni, E.; Asoh, K.; Kan, Y.; Uenoyama, K.; Imagawa,
H. Synlett 1995, 169. (c) Nishizawa, M. Studies in Natural
Product Chemistry: Stereoselective Synthesis, Part A, Vol.
1; Atta-Ur-Rahman, Ed.; Elsevier: Amsterdam, 1988, 655–
676. (d) Nishizawa, M. J. Synth. Org. Chem. Jpn. 1999, 57,
677. (e) Nishizawa, M.; Imagawa, H. J. Synth. Org. Chem.
Jpn. 2006, 64, 744.
In conclusion, we found that although the Hg(OTf)2-cata-
lyzed hydration of internal alkynes requires long reaction
time, a hydroxy group located in the b-, g-, and d-position
can significantly accelerate the reaction through the inter-
mediate formation of cyclic enol ethers. Although b-, and
d-hydroxyalkyne selectively generate a single keto alco-
hol, g-hydroxyalkyne affords a mixture of keto alcohols
via energetically comparable exo- and endo-mode cy-
clization. A hydroxy group located in more than five car-
bons from the alkyne does not participate in the hydration
reaction. Indeed, these alkynols behave like an internal
alkyne to give a mixture of ketones without regioselectiv-
ity. The sec- and tert-hydroxy groups also accelerate the
hydration of alkyne when they are located in the b- and d-
position to give keto alcohols in complete regioselectivity
via endo- and exo-mode participations, respectively.
Acknowledgment
This study was financially supported by a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science, and Technology of
the Japanese Government, and a MEXT.SENRYAKU, 2008.
(14) (a) Nishizawa, M.; Skwarczynski, M.; Imagawa, H.;
Sugihara, T. Chem. Lett. 2002, 12. (b) When the hydration
of terminal alkyne was carried out using Hg(OTf)2 as
catalyst, mercuric acetylide (i) is formed to some extent,
corresponding to catalyst suicide (Figure 1).
R
Hg
i
R
Figure 1
Synlett 2009, No. 7, 1175–1179 © Thieme Stuttgart · New York