3H). 13C NMR (75 MHz, DMSO-d6) d: 171.7, 164.9, 152.5, 146.8,
Table 4 Preparation of cinoxacin– and flumequine–amino acid conju-
gatesa
146.2, 145.4, 136.1, 130.9, 126.2, 123.3, 119.9, 113.6, 113.1, 102.8,
1
2
102.7, 97.0, 48.7, 14.5. C19H14N4O4· H2O, Calculated: C, 61.45;
H, 4.07; N, 15.09, Found: C, 61.19; H, 3.73; N, 15.27.
General procedure for oxolinic–amino acid conjugates (25–40)
A mixture of 7-(1H-benzo[d][1,2,3]triazole-1-carbonyl)-5-ethyl-
[1,3]dioxolo[4,5-g]quinolin-8(5H)-one 5 (181 mg, 0.5 mmol),
amino acid (0.5 mmol) and triethylamine (101 mg, 0.13 mL, 1.0
mmol) in acetonitrile–water mixture (3.5 mL +1.5 mL) was stirred
at room temperature for three hours. The acetonitrile was removed
under vacuum and the residue was acidified with concentrated
HCl. The precipitate was filtered, washed with cold water, dried
under reduced pressure and recrystallized from aq. ethanol to gave
the corresponding product.
Overall
Entry Reactant
Quinolone Product yield (%) Mp (◦C)
1
2
3
4
5
L-Ala-OH 10
7
7
7
8
8
52
53
54
55
56
66
66
58
43
45
236–238
266–268
179–181
175–176
200–202
(S)-2-(5-Ethyl-8-oxodihydro-[1,3]dioxolo[4,5-g]quinoline-7-car-
boxamido)-4-methylsulfanylbutanoate (30). (170 mg, 87%), mp
193–194 ◦C. 1H NMR (300 MHz, DMSO-d6) d: 1.34 (t, J = 7.2 Hz,
3H), 1.93–2.13 (m, 5H), 2.50 (m, 2H), 4.43 (q, J = 7.2 Hz, 2H),
4.59–4.66 (m, 1H), 6.24 (s, 2H), 7.50 (s, 1H), 7.63 (s, 1H), 8.71 (s,
1H), 8.90 (bs, 1H), 10.53 (d, J = 7.7 Hz, 1H). 13C NMR (75 MHz,
DMSO-d6) d: 14.6, 29.5, 31.6, 48.9, 50.8, 96.7, 102.6, 102.8, 110.1,
123.1, 136.1, 146.2, 146.3, 152.6, 164.3, 173.2, 174.1. C18H20N2O6S,
Calculated: C, 55.09; H, 5.14; N, 7.14, Found: C, 54.89; H, 5.06;
N, 6.75.
DL-Phe-OH 13
L-Trp-OH 17
L-Phe-OH 14
L-Trp-OH 17
a All compounds are novel.
Preparation of cinoxacin– and flumequine–amino acid conjugates
In order to show the generality of benzotriazole methodology,
we coupled amino acids with two other quinolone antibiotics:
cinoxacin 3 and flumequine 4. Cinoxacin–amino acid conjugates
52–54 were obtained in 73–82% yields by reacting 7 with 10, 13,
17 in aqueous acetonitrile for 3 h (Table 4).
Acknowledgements
We thank the Higher Education Commission of Pakistan for
financial support to Dr. Munawar Ali Munawar, a post-doc fellow
from the University of the Punjab, Pakistan.
Under the same reaction procedure the coupling of
benzotriazole-activated flumequine
8 with 14, 17 afforded
flumequine–amino acid conjugates 55–56 in 53 and 56% yields,
respectively (Table 4).
References
1 C. Levine, H. Hiasa and K. J. Marians, Biochim. Biophys. Acta, 1998,
1400, 29–43.
2 J. Ruiz, J. Antimicrob. Chemother, 2003, 51, 1109–1117.
3 I. A. Critchley, M. E. Jones, P. D. Heinze, D. Hubbard, H. D. Engler,
A. T. Evangelista, C. Thornsberry, J. A. Karlowsky and D. F. Sahm,
Clin. Microbiol. Infect., 2002, 8, 214–221.
4 (a) T. Aboul-Fadl and E. A. Fouad, Pharmazie, 1996, 51, 30–33; (b) D.
Galante, C. Pennucci, S. Esposito and D. Barba, Drugs Exp. Clin. Res.,
1985, 11, 331–344; (c) P. A. Mardh, S. Colleen and K. E. Andersson,
J. Antimicrob. Chemother, 1977, 3, 411–416; (d) A. L. Barry, R. N. Jones,
C. Thornsberry;, L. W. Ayers;, E. H. Gerlach and H. M. Sommers,
Antimicrob. Agents Chemother, 1984, 25, 633–637; (e) S. R. Rohlfing,
J. R. Gerster and D. Kvam, Antimicrob. Agents Chemother., 1976, 10,
20–24.
Conclusions
In conclusion, we have developed a convenient and an efficient
synthesis of nalidixic–, oxolinic–, cinoxacin- and flumequine–
amino acid conjugates, utilizing a simple two-step route involving:
(i) activation of the quinolone carboxylic acids as stable benzotria-
zole derivatives and (ii) coupling with free amino acids in aqueous
media.
Experimental
5 D. V. Kohli, R. K. Uppadhyay, S. K. Saraf and K. K. Vishwakarma,
Pharmazie, 1992, 47, 57–59.
6 J. P. Sanchez, EU Pat., 304 087, 1989.
7 C. Laruelle, M. Lepant, and B. Raynier, Fr. Pat., 2 564 832, 1985.
8 JP Pat., 56 053 679, 1985.
Preparation of 7-(1H-benzo[d][1,2,3]triazole-1-carbonyl)-5-ethyl-
[1,3]dioxolo[4,5-g]quinolin-8(5H)-one (5)
To a solution of 1H-benzotriazole (2.0 g, 16 mmol) in methylene
chloride was added thionyl chloride (0.47 g, 4.0 mmol) at
25 ◦C. After 30 min oxolinic acid (1 g, 3.8 mmol) was added
and the stirring was continued for 2 h. The precipitate was filtered
off, and the filtrate was washed with water and evaporated to give
a yellow solid (1.1 g, 3.0 mmol, 75%), mp 229–232 ◦C. 1H NMR
(300 MHz, DMSO-d6) d: 8.67 (s, 1H), 8.22 (t, J = 8.0 Hz, 2H), 7.79
(t, J = 7.8 Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.52 (d, J = 6.5 Hz,
2H), 6.24 (s, 2H), 4.39 (q, J = 6.5 Hz, 2H), 1.40 (t, J = 6.6 Hz,
9 T. S. Leonova, E. N. Padeiskaya and V. G. Yashunskii, Khim.-Farm.
Zh., 1987, 21, 692–696.
10 K. Pongracz, J. Frank, G. Kulcsar, K. Medzihradszky, and L. Nadasi,
HU Pat., 36 483, 1985.
11 K. Pongracz, J. Frank, G. Kulcsar, K. Medzihradszky, L. Nadasi, and
G. Szokan, HU Pat., 36 842, 1985.
12 E. A. Jefferson, E. E. Swayze, S. A. Osgood, A. Miyaji, L. M. Risen
and L. B. Blyn, Bioorg. Med. Chem. Lett, 2003, 13, 1635–1638.
13 A. R. Katritzky, K. Suzuki and Z. Wang, Synlett, 2005, 11, 1656–1665.
14 (a) A. R. Katritzky, L. Khelashvili, P. P. Mohapatra and P. J. Steel,
Synthesis, 2007, 23, 3673–3677; (b) A. R. Katritzky, M. Wang, H.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 2359–2362 | 2361
©